

The CERN OpenStack Cloud

Compute Resource Provisioning for the Large Hadron Collider

Jan van Eldik for the CERN Cloud Team

Cloud Service 101

Cloud Computing

Why a CERN Private Cloud?

Cloud Components

Usage

Cloud Computing

- Cloud provide Infrastructure-as-a-Service
 - Compute, Storage, Network resources
- Cloud implies:
 - APIs
 - Elasticity
 - Accounting
 - •
- Clouds are ubiquitous:
 - Public clouds: Amazon, Microsoft, Google, ...
 - Private clouds on many sites

Why a CERN private Cloud?

Advantages for Service Providers:

- Consolidate resource provisioning
 - Offer single pane-of-glass
- Optimize resource utilization
 - Pack Virtual Machines on physical nodes
 - Thinly provision / overcommit resources
- Reduce operational cost
 - Single team to look after resource life-cycle
 - Migrate workloads to facilitate upgrades/repairs

Why a CERN private Cloud?

Advantages for customers:

- Rapid provisioning, based on agreed quota
- Scale-out possibilities
- Easy to build redundant services
- Possibility to deploy specific images
- No hardware to worry about

In general: loose coupling between laaS and Application layers

The sky is cloudy

- Many HEP sites offer Cloud endpoints
- WLCG experiments consume cloud resources
 - Public, HEP, CERN private, Online farms, ...
- Hybrid clouds
 - Size private cloud for regular load, buy public resources in times of peak demand
- Federated clouds
 - Accept federation credentials to allow seamless resource sharing.

CERN private cloud details

- Based of OpenStack Cloud software
 - Open-source project, started in 2011
 - Enormous traction in industry
- Production service at CERN since 2013
 - 2600 users, 600 shared projects
- Growing list of components
 - Compute: 8000 servers, 250K cores, 28K VMs
 - Block Storage
 - Container Orchestration
 - Networking
 - •

Project types

Personal

- Limited resources, tied to individuals
- Intended for test/dev work
- Resources deleted once person leaves

Shared

- Agreed resource quota
- Non-standard flavors
- Tied to experiments, services
- Production workloads
- Possibility for optimization
 - CPU optimized, higher IOPS, Critical power, Wigner, ...

Interfaces

- API access
 - OpenStack API
 - EC2 API
- CLIs
 - Installed on Ixplus
 - And on Ixplus-cloud for newer versions
- Web interface
 - https://openstack.cern.ch

Compute - Nova

Manage Virtual Machines

- Create VMs in a Project
- Based on images
 - Linux, Windows, CernVM, private,...
- "Flavours" to describe virtual hardware
- VNC console access
- Contextualize VMs at boot time
 - Install experiment software, run Puppet, ...

Compute - Nova - II

Advanced operations

- Snapshot VM, boot new "clones"
- Deploy VMs across multiple Availability Zones
 - Increase resilience against infrastructure failure
- Upon request:
 - Special flavours
 - Placement on Critical Power or Wigner DC
 - CPU optimized configurations
 - •

Block Storage - Cinder

Manage Volumes

- Create volumes, attach to VMs
- Boot VMs from volumes

Upon request

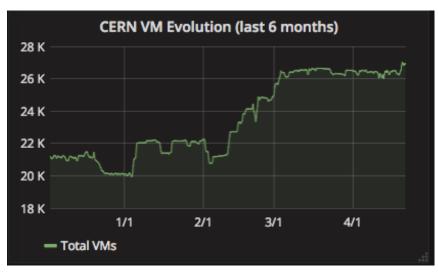
- Higher-IOPS volumes
- Volumes in Critical Power or Wigner DC

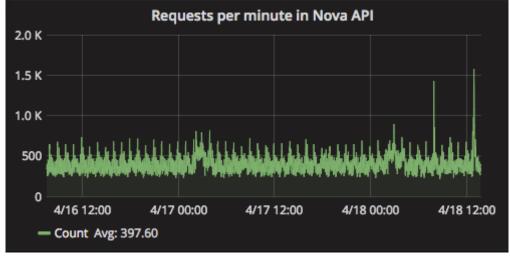
Notes

- Volume service backed by Ceph
- FSaaS in beta testing

Other interesting features

- Container Orchestration
 - Kubernetes, Docker Swarm, Mesos, ...
 - See next talk ©
- VM Orchestration
 - Auto-scaling deployments, healing
- Networking
 - Very much WIP
- Bare Metal provisioning


CERN Cloud in Numbers (1)


- 7000 hypervisors in production + ~2000 being added (5.8K 1yr ago)
- 220K cores + 86K to be added (155k)
- 3.7K volumes with 1.2 PB allocated (Cinder)
 (2.8K)
- 3.8K images/snapshots (Glance) (2.7K)
- 27 fileshares with 18 TB allocated (Manila) (new)
- 71 container clusters (Magnum) (new)

CERN Cloud in Numbers (2)

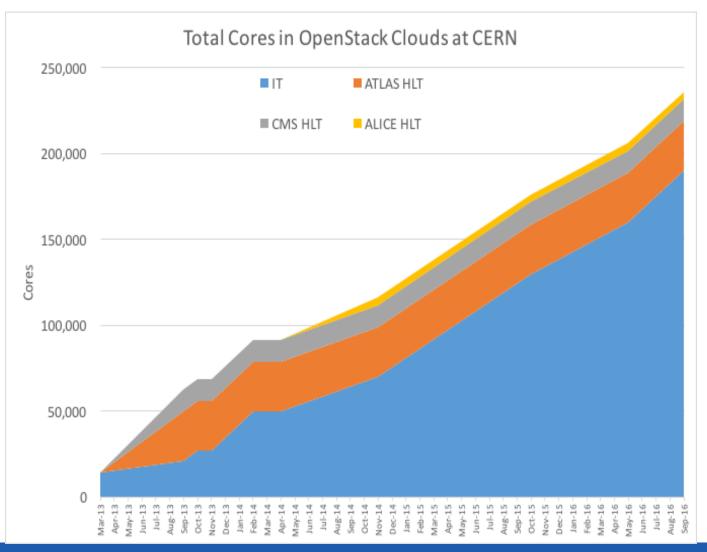
- ~ 400 operations/min in Nova API
 - Mainly creation/deletion of VMs
- ~27K VMs at the moment (+5k 6 months ago)

LHCb projects

 Shared Tenant 		Instances			CPUs		
		Used	Quota	Used%	Used	Quota	Used%
LHCb Build servers	П	39	47	82	245	248	98
LHCb CLOUD.CERN.ch	Ϊİ	365	502	72	365	502	72
LHCb Cloud Workers	Ħ	0	100	0	0	12	0
LHCb ICE-DIP ESR2		1	50	2	4	50	8
LHCb LHCb Analysis preservation		12	25	48	24	25	96
LHCb LHCbDirac services		14	14	100	196	208	94
LHCb Lc2pXX analysis		1	1	100	8	8	100
LHCb Reproducible Experiment Platform		4	8	50	12	12	100
LHCb VOboxes		30	90	33	105	216	48
LHCb Vcycle	П	5	20	25	5	20	25

In summary

- Cloud service is open to all CERN users
- Hosting Lxplus, Lxbatch, Terminal Servers, Web servers, Build servers, ...
- As well critical services for experiments and organization
- Container services are taking off!


Homepage, user guide:

https://openstack.cern.ch

OpenStack at CERN

In production:

- 4 clouds
- >200K cores
- >8,000 hypervisors

90% of CERN's compute resources are now delivered on top of OpenStack

Rich Usage Spectrum

- Batch service
 - Physics data analysis
- IT Services
 - Sometimes built on top of other virtualised services
- Experiment services
 - E.g. build machines
- Engineering services
 - E.g. micro-electronics/chip design
- Infrastructure services
 - E.g. hostel booking, car rental, ...
- Personal VMs
 - Development

rich requirement spectrum!

ERUNDECK

