
Gaudi Conditions Handling
Hadrien Grasland (LAL), Benedikt Hegner (CERN)
18.5.2017

Benedikt Hegner

● Gaudi has no standard condition support
● So each experiment wrote its own
● Multi-threaded event processing now breaks everything
● What should we do next?

− Keep maintaining duplicate codebases?
− Converge towards a common approach?
− Share more code between users?

We designed and wrote (*) prototypes and proposed them to the
Gaudi community

(*) current prototype entirely up to Hadrien Grasland. Thanks!

Current Gaudi Status

Benedikt Hegner

● Overall, conditions change very slowly w.r.t. event data
− At one extreme, LHCb conditions are valid for 1 run (~hours)
− At the other, ATLAS has noise bursts: ~200ms every minute
− Still thousands of events between IoV changes on average!

■ Mostly true for highly skimmed derived data sets as well as
they usually don’t use lower-level conditions

● Event processing requirements vary between
experiments
− LHCb: ~10k raw conditions, very long IoVs, 40 MHz HLT on ~3k

nodes → HLT node budget ~75 µs/event
− ATLAS: ~300 raw conditions, ~10 of them can vary rapidly (IoV < 1

minute). HLT node budget ~100ms/ev

Existing Use Patterns

Benedikt Hegner

● LHCb: Take a fast path when conditions do not change
− As before, reuse previous raw & derived condition data
− Avoid checking individual condition validity for every event
− Minimize condition readout overhead in event processing
− Drain & restart on changes

● ATLAS: Keep multiple detector states in flight
− Do not duplicate rarely changing state (common case)
− Handle out-of-order events on IoV boundaries efficiently
− Process “new” conditions in parallel with “old” events

● Diverse requirements, but compatible with each other!

Important Optimizations

Benedikt Hegner

1. Support concurrent event processing
2. Keep RAM usage under control
3. Accommodate diverse storage backends
4. Allow efficient condition IO & computations
5. Easy to use, error-proof, and scalable
6. Experiment-agnostic, but reasonably compatible

Requirements for a New Implementation

Benedikt Hegner

● Multithreaded Gaudi is mainly about RAM usage
− Condition state should not grow indefinitely
− Expose the ability of slice-based backends to set clear bounds

on condition storage size
− Transient storage for a detector state is called a ConditionSlot

(similar to EventSlot)

● Framework interface to conditions plays a key role here
− Limit number of ConditionSlots in flight
− Allows backend to track condition usage and perform smart

garbage collection
− Allow for storage optimizations (sharing, lazy GC...)

Requirement:
Support for Concurrency / Memory Control

Benedikt Hegner

● Anything that maps condition identifiers to condition
data

● Many implementations exist or are being developed
− DetectorStore & public Tool members (alas...)
− ATLAS ConditionStore (~ DetectorStore w/ vectors of data)
− DDCond (condition storage for DD4Hep)
− Needed to write another for the prototype...

● Convergence on a single storage backend is desired, but
unlikely

● Framework interface should be backend-agnostic

Requirement:
Efficient RAM Storage Backends

Benedikt Hegner

● Condition storage backends are interfaced through the
TransientConditionStorageSvc concept:

− Communicate implementation limits:

− Set up storage (capacity in ConditionSlots, 0=unbounded):

− Query storage usage at runtime:

− Track condition dataflow (see next slide)
− Allocate/reuse condition storage for an incoming event:

● Using a future allows delayed allocation (when storage is full)
● C++11 futures aren’t enough, need Concurrency TS (Boost, HPX...)
● ConditionSlot liberation is automated through RAII

Storage Interface Proposal

Benedikt Hegner

● We need to track some condition usage metadata
− For the backend to manage condition data correctly
− For the scheduler to know data dependencies

● Condition users also need a way to access conditions

● We already know that problem from event data and handles

Dataflow Tracking - Condition Handles

Benedikt Hegner

● Condition handles are a proxy to condition data
● Each condition user must request its handles separately

 ⇒ handles are movable, but not copyable
● Write handles allow producers to write condition data:

● Read handles allow consumers to read it later on:

● This interface allows powerful backend optimizations:
− Write handles can also support moving data in
− Reads can be implemented without synchronization

Accessing Conditions Data

Benedikt Hegner

● Condition handle prototype is reasonably fast
− Writing a condition takes 0.3 µs
− Reading a condition takes 10 ns
− Algorithm independent of Ncond, tested for 10K conditions

● Easily outperforming ATLAS’ StoreGate, used for event data:
− SG’s algorithmic complexity is roughly O(log(Nkeys))
− With 50 keys, writing (“record”) takes 2.2 µs (7.3x slower)
− ...and reading (“retrieve”) takes 0.83 µs (83x slower)

How does the prototype perform?

Benedikt Hegner

● Gaudi scheduler was mostly designed for CPU-bound work

● Ongoing debate regarding how IO should be integrated
− IO tasks modeled as blocking Algs on extra OS threads?

● Pros: Code reuse, familiar concepts, minimal scheduler rework
● Cons: Inefficient, fragile, thread-unsafe by default, hard to use

− IO resources modeled as asynchronous services?
● Pros: No wasted RAM & context switches, thread-safe by default, global

request awareness, this is where standard C++ is going, decoupling of
concerns

● Cons: Integration with algorithm scheduling is more difficult

● Prototype interface can accommodate both designs

Requirement:
Efficient Condition I/O and Computation

Benedikt Hegner

● Models an IO resource (file, database…)
● On initialization, user specifies requested conditions

● Service implementation registers appropriate handles

● Framework then invokes IO services asynchronously

I/O service proposal

Benedikt Hegner

● After condition IO, post-processing is usually needed
− “Derived” conditions, such as alignments

● For such tasks, an Alg-like abstraction makes sense
− Need a condition-aware variant: doesn’t run for every event!
− How much scheduling infrastructure should be shared?

● For reasons outlined before, we think IO Algs are a
mistake

− Support is feasible, probably better to drop them

ConditionAlg

Benedikt Hegner

● Algs register to the Scheduler during initialization

● They are implemented using handles

● They compute conditions on Scheduler request

Low-level ConditionAlg Interface

Benedikt Hegner

● Implementing a ConditionAlg requires some boilerplate
− Register inputs and outputs during initialization
− Read input conditions on execute()
− Compute IoV of output (~ intersection of input IoVs)
− Write output conditions down

● Like in event processing, we can automate this work

● Prototype features Transformer + MultiTransformer demo

Requirement: Ease of Use
Functional ConditionAlgs

Benedikt Hegner

● Base class template follows Transformer’s conventions

● Constructor receives inputs/output identifiers

● User only needs to implement condition derivation functor

● Caveat: Only suitable for condition derivation
− Design assumptions break down for IO

ConditionTransformer

Benedikt Hegner

● Prototype performance
− Scheduling an event with full condition reuse: 5.4 µs
− Regenerating full condition dataset: (12.3 + 0.3 x Ncond) µs
− ConditionTransformer overhead: (1.0 + 0.1 x Nalg) µs
− Reading a condition: 10 ns

● Benchmarking configuration
− GCC 6.2 / Linux 4.9 / Intel Xeon E5-1620 v3 @ 3.50GHz
− Nevent = 10000 and Ncond = 10000
− Analysis through affine performance model

More Performance Figures

Benedikt Hegner

● At the end, we need a simple framework entry point
● Initialize it with a TransientConditionStorageSvc

● Request asynchronous condition setup for each event
− Condition setup = Storage allocation + IO
− Future-based interface provides flexibility

● Non-blocking polling
● Blocking wait for availability
● Attach asynchronous continuation

● Will also need experiment hook for timestamp extraction

Overall Entry Pointer - ConditionSvc

Benedikt Hegner

● Started from ATLAS’ condition handling design
− Abstracted RAM storage away
− Added support for condition garbage collection
− Removed various implementation detail leaks
− Used a more performance-oriented interface where sensible

● ConditionHandle more tightly integrated with storage backend
● IO concurrency is resource-based rather than request-based

● Interface could probably wrap ATLAS infrastructure
− Biggest pain point would be IO algorithms

● A common interface would allow a common CondDBSvc

Requirement:
Compatibility

Benedikt Hegner

● What’s done
− Requirements analysis
− High-level interface design
− Full-featured prototype outside of Gaudi
− Early performance analysis

● What’s next
− Refine interface design
− Examine remaining experiment edge cases
− Integrate into Gaudi & experiments
− Improve documentation & tests (requires interface freeze)

Conclusions

Benedikt Hegner

Questions? Comments?
Prototype code @ https://gitlab.cern.ch/hgraslan/conditions-prototype

https://gitlab.cern.ch/hgraslan/conditions-prototype

Benedikt Hegner

● In theory
− Condition readout is sync-free (zero mutexes/atomics)
− Condition insertion locks a mutex briefly at the end
− Slot allocation is mutex-protected, but has many fast paths

● In practice
− Test scenario: Condition IO taking 24 ms, followed by “map”

derivation taking 32 ms/condition. Ncond = 16, Nevent = 128.
− Derivation-only scenario: 8220 ms on a 4-core/8-thread CPU

(7.97x speedup vs ideal sequential execution)
− With IO: 8401 ms (8.16x sequential, due to latency hiding)

Requirement:
Scalability

Benedikt Hegner

Global detector
state during
acquisition

Measured event
stream

Recorded
event stream

~1000
events

Time

File
order

Effect of Out-of-Order Processing

Benedikt Hegner

Condition data

State of
detector

elements

Interval of validity (IoV)

A Bit of Terminology

