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● Gaudi has no standard condition support
● So each experiment wrote its own
● Multi-threaded event processing now breaks everything
● What should we do next?

− Keep maintaining duplicate codebases?
− Converge towards a common approach?
− Share more code between users?

We designed and wrote (*) prototypes and proposed them to the 
Gaudi community

(*) current prototype entirely up to Hadrien Grasland. Thanks!

Current Gaudi Status
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● Overall, conditions change very slowly w.r.t. event data
− At one extreme, LHCb conditions are valid for 1 run (~hours)
− At the other, ATLAS has noise bursts: ~200ms every minute
− Still thousands of events between IoV changes on average!

■ Mostly true for highly skimmed derived data sets as well as 
they usually don’t use lower-level conditions

● Event processing requirements vary between 
experiments
− LHCb: ~10k raw conditions, very long IoVs, 40 MHz HLT on ~3k 

nodes → HLT node budget ~75 µs/event
− ATLAS: ~300 raw conditions, ~10 of them can vary rapidly (IoV < 1 

minute). HLT node budget ~100ms/ev

Existing Use Patterns
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● LHCb: Take a fast path when conditions do not change
− As before, reuse previous raw & derived condition data
− Avoid checking individual condition validity for every event
− Minimize condition readout overhead in event processing
− Drain & restart on changes

● ATLAS: Keep multiple detector states in flight
− Do not duplicate rarely changing state (common case)
− Handle out-of-order events on IoV boundaries efficiently
− Process “new” conditions in parallel with “old” events

● Diverse requirements, but compatible with each other!

Important Optimizations
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1. Support concurrent event processing
2. Keep RAM usage under control
3. Accommodate diverse storage backends
4. Allow efficient condition IO & computations
5. Easy to use, error-proof, and scalable
6. Experiment-agnostic, but reasonably compatible

Requirements for a New Implementation
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● Multithreaded Gaudi is mainly about RAM usage
− Condition state should not grow indefinitely
− Expose the ability of slice-based backends to set clear bounds 

on condition storage size
− Transient storage for a detector state is called a ConditionSlot 

(similar to EventSlot)

● Framework interface to conditions plays a key role here
− Limit number of ConditionSlots in flight
− Allows backend to track condition usage and perform smart 

garbage collection
− Allow for storage optimizations (sharing, lazy GC...)

Requirement:
Support for Concurrency / Memory Control
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● Anything that maps condition identifiers to condition 
data

● Many implementations exist or are being developed
− DetectorStore & public Tool members (alas...)
− ATLAS ConditionStore (~ DetectorStore w/ vectors of data)
− DDCond (condition storage for DD4Hep)
− Needed to write another for the prototype...

● Convergence on a single storage backend is desired, but 
unlikely

● Framework interface should be backend-agnostic

Requirement:
Efficient RAM Storage Backends
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● Condition storage backends are interfaced through the 
TransientConditionStorageSvc concept:

− Communicate implementation limits:

− Set up storage (capacity in ConditionSlots, 0=unbounded):

− Query storage usage at runtime:

− Track condition dataflow (see next slide)
− Allocate/reuse condition storage for an incoming event:

● Using a future allows delayed allocation (when storage is full)
● C++11 futures aren’t enough, need Concurrency TS (Boost, HPX...)
● ConditionSlot liberation is automated through RAII

Storage Interface Proposal
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● We need to track some condition usage metadata
− For the backend to manage condition data correctly
− For the scheduler to know data dependencies

● Condition users also need a way to access conditions

● We already know that problem from event data and handles

Dataflow Tracking - Condition Handles
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● Condition handles are a proxy to condition data
● Each condition user must request its handles separately

       ⇒ handles are movable, but not copyable
● Write handles allow producers to write condition data:

● Read handles allow consumers to read it later on:

● This interface allows powerful backend optimizations:
− Write handles can also support moving data in
− Reads can be implemented without synchronization

Accessing Conditions Data
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● Condition handle prototype is reasonably fast
− Writing a condition takes 0.3 µs
− Reading a condition takes 10 ns
− Algorithm independent of Ncond, tested for 10K conditions

● Easily outperforming ATLAS’ StoreGate, used for event data:
− SG’s algorithmic complexity is roughly O(log(Nkeys))
− With 50 keys, writing (“record”) takes 2.2 µs (7.3x slower)
− ...and reading (“retrieve”) takes 0.83 µs (83x slower)

How does the prototype perform?
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● Gaudi scheduler was mostly designed for CPU-bound work

● Ongoing debate regarding how IO should be integrated
− IO tasks modeled as blocking Algs on extra OS threads?

● Pros: Code reuse, familiar concepts, minimal scheduler rework
● Cons: Inefficient, fragile, thread-unsafe by default, hard to use

− IO resources modeled as asynchronous services?
● Pros: No wasted RAM & context switches, thread-safe by default, global 

request awareness, this is where standard C++ is going, decoupling of 
concerns

● Cons: Integration with algorithm scheduling is more difficult

● Prototype interface can accommodate both designs

Requirement:
Efficient Condition I/O and Computation
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● Models an IO resource (file, database…)
● On initialization, user specifies requested conditions

● Service implementation registers appropriate handles

● Framework then invokes IO services asynchronously

I/O service proposal
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● After condition IO, post-processing is usually needed
− “Derived” conditions, such as alignments

● For such tasks, an Alg-like abstraction makes sense
− Need a condition-aware variant: doesn’t run for every event!
− How much scheduling infrastructure should be shared?

● For reasons outlined before, we think IO Algs are a 
mistake

− Support is feasible, probably better to drop them

ConditionAlg
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● Algs register to the Scheduler during initialization

● They are implemented using handles

● They compute conditions on Scheduler request

Low-level ConditionAlg Interface
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● Implementing a ConditionAlg requires some boilerplate
− Register inputs and outputs during initialization
− Read input conditions on execute()
− Compute IoV of output (~ intersection of input IoVs)
− Write output conditions down

● Like in event processing, we can automate this work

● Prototype features Transformer + MultiTransformer demo

Requirement: Ease of Use
Functional ConditionAlgs
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● Base class template follows Transformer’s conventions

● Constructor receives inputs/output identifiers

● User only needs to implement condition derivation functor

● Caveat: Only suitable for condition derivation
− Design assumptions break down for IO

ConditionTransformer
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● Prototype performance
− Scheduling an event with full condition reuse: 5.4 µs
− Regenerating full condition dataset: (12.3 + 0.3 x Ncond) µs
− ConditionTransformer overhead: (1.0 + 0.1 x Nalg) µs
− Reading a condition: 10 ns

● Benchmarking configuration
− GCC 6.2 / Linux 4.9 / Intel Xeon E5-1620 v3 @ 3.50GHz
− Nevent = 10000 and Ncond = 10000
− Analysis through affine performance model

More Performance Figures
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● At the end, we need a simple framework entry point
● Initialize it with a TransientConditionStorageSvc

● Request asynchronous condition setup for each event
− Condition setup = Storage allocation + IO
− Future-based interface provides flexibility

● Non-blocking polling
● Blocking wait for availability
● Attach asynchronous continuation

● Will also need experiment hook for timestamp extraction

Overall Entry Pointer - ConditionSvc
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● Started from ATLAS’ condition handling design
− Abstracted RAM storage away
− Added support for condition garbage collection
− Removed various implementation detail leaks
− Used a more performance-oriented interface where sensible

● ConditionHandle more tightly integrated with storage backend
● IO concurrency is resource-based rather than request-based

● Interface could probably wrap ATLAS infrastructure
− Biggest pain point would be IO algorithms

● A common interface would allow a common CondDBSvc

Requirement: 
Compatibility
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● What’s done
− Requirements analysis
− High-level interface design
− Full-featured prototype outside of Gaudi
− Early performance analysis

● What’s next
− Refine interface design
− Examine remaining experiment edge cases
− Integrate into Gaudi & experiments
− Improve documentation & tests (requires interface freeze)

Conclusions
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Questions? Comments?
Prototype code @ https://gitlab.cern.ch/hgraslan/conditions-prototype

https://gitlab.cern.ch/hgraslan/conditions-prototype
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● In theory
− Condition readout is sync-free (zero mutexes/atomics)
− Condition insertion locks a mutex briefly at the end
− Slot allocation is mutex-protected, but has many fast paths

● In practice
− Test scenario: Condition IO taking 24 ms, followed by “map” 

derivation taking 32 ms/condition. Ncond = 16, Nevent = 128.
− Derivation-only scenario: 8220 ms on a 4-core/8-thread CPU 

(7.97x speedup vs ideal sequential execution)
− With IO: 8401 ms (8.16x sequential, due to latency hiding)

Requirement:
Scalability
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Effect of Out-of-Order Processing
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A Bit of Terminology


