RICH Status

SR
= o '(‘ n-"g')e g
SO

UNIVERSITY Ol
CAMBRIDGE

lNtroauction

* Focus on reconstruction developments.

* Work still ongoing in the simulation, but not covered in detail here.

 RICH in the upgrade has :-
» Upgraded photon detectors (MaPMTs replacing existing HPDs)
* Updated RICH1 optics (re-optimisation taking into account Aerogel removal).

* Fundamentally though, works in the same way. Same algorithms (currently) envisaged.

ve had an ‘upgrade’ sequ | based ate detector description f

RICH Reconstruction Basics

RICH Detector Hits Tracks (Long. Downstream, Upstream)

« Raw Event Decoding « Radiator trajectories (§egments)
(HPD/MaPMT) * Ray traced PD panel impact points
(global and local frames)

e Cherenkov photon expected yields
and energy spectra

e Ray traced Cherenkov cones

« Geometrical efficiency

* Expected Cherenkov Angles

e Expected Cherenkov resolutions

» Pixel Clustering
« Pixel Space Points
(global and local)

Cherenkov Photon Candidates

e Reconstruction from pixe|8 Global Likelihood Minimisation

and segments

Predicted likelihood » Compute pixel backgrounds

contribution to each pixel * Minimise global event
likelihood. Computes the Rich
‘DLL" values.

Original Software Design

e Current C++ reconstruction dates back at least 10 years.
e Designed with very different ideas in mind to now

» Object oriented design was the next big thing.

» Parallel execution never entered the picture.

» Basic SIMD instructions may have been available, but never discussed.
 Different constraints from the framework.
files. Very limited

e _Qriginally no python configuration. Flat ‘job options

"RichReckvent”

1 track to

{0’1 ,2’3}* plxel to

Data Cache Example - ‘RichRecPhoton’

Private Attributes

Rich::ObjPtn< LHCb::RichGeomPhoton > m_geomPhoton
The result of the Cherenkov angles reconstruction. More...

Rich::HypoData< LHCb::RichRecPhoton::FloatType > m_expPixelSignalPhots
The Expected number of signal photons for each particle hypothesis. More...

Rich::HypoData< LHCb::RichRecPhoton::FloatType > m_expPixelScattPhots
The Expected number of scattered photons for each particle hypothesis. More...

LHCb::RichRecSegment * m_richRecSegment
RichRecSegment used in the formation of the RichRecPhoton candidate. More...

LHCb::RichRecTrack * m_richRecTrack
RichRecTrack associated to the RichRecSegment used in the formation of the RichRecPhoton candidate. More...

LHCb::RichRecPixel * m_richRecPixel
RichRecPixel used in the formation of the RichRecPhoton candidate. More...

« m_geomPhoton : Encapsulates the photon reconstruction

m_expPixel{Signal,Scatt}Phots : Cached data on expected detector signals.

m_richRec{Segment,Pixel.Track} : Relations back to associated data objects

- Data only related to each other in that they all are associated to the same photon candidates.

RichRecPhoton a small cache | Segment class much more extensive.

6

Moving to the Future...

- Make the algorithms fully thread safe.
- Address design choices that hinder modern compiler optimisations.

« Algorithms that operate on const vector<Foo>& rather than tools on Foo*. Create
vector<Baa>.

* Move towards SOA rather than AOS designs (so small Foo and Baa objects, often just float).

 Remove monolithic event data model ‘cache’ objects. More, smaller, more focused data
objects. Composition when required using Range va3 library.

* Make use of AnyDataHandle to remove DataObject inheritance constraint.

Status of Functional Migration

« Fully functional RICH reconstruction sequence using the new
framework available in latest Brunel release.

e N fact, is the default processing sequence for this years data
taking.

e Old sequence still available, as ‘backup’.

* Timing wise, new sequence is ~2.5 times faster” than that in the
Brunel released for the start of the 2016 data taking.

SIMD (Single Instruction Multiple Data)

* Hardware vendors raise computational power of today’s CPUs with

increasing support for parallelism:
— More cores (beyond the scope of this talk)
— Larger vector units, richer vector instruction sets
* Vector units: perform same operation on multiple data

— Data parallelism at instruction level
* Peak performance achievable only if vector units are properly used

— Especially for “extreme” architectures like the Xeon Phi

short short short short short short short short short short short short short short short short

Float Float Float Float Float Float Float Float
Double Double Double Double

' °
128 bits (SSE X) Vector units are there to stay!

|
256 bits (AVX, AVX2)

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014 ModernisingROOT SWenzel.pdf

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

Horizontal (external) vectorisation:

Object N
{X,

Y
VA

}
Object |
vectorize algorithm by using {xL,..xn,

many objects (e.g. particles) at | Y1-¥™
- z1...zn}
the same time

 Vertical (internal) vectorisation:

Object vectorize internally the algorithm operating
{X, on a single object

Y, - example: for loop over internal data
Z

\ Object data member (e.g. X,y,z) must be
stored in a vector

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

10

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

Ray [racing Photons

Algorithm::sysExecute(EventContext const&)'2 <cycle 24>

Types Callers I All Callers Callee Map Source Code

Rich::Future:Rec:QuarticPhotonReco:operator()(LHCb:FastAllocVector<LHCh:RichTrackSegment, std: 3 C
allocator<LHCb:RichTrackSegment> > const&, LHCh::FastAllocVector<Rich::Future:HypoData<double, ‘l’ ll| TrackRungeKutta
void>, std:allocator<Rich::Future:HypoData<double, void> > > const&, LHCh:FastAllocVector<Rich:Futurg | “ Extrapolator:
“HypoData<double, void=>, std:allocator<Rich::Future:HypoData<double, void> > > const&, LHCb:Fast & 4 evaluateRKSte. ..
AllocVector<Rich:Future:Rec:SegmentPanelSpacePoints, std:allocator<Rich:Future:Rec:SegmentPanel | b

SpacePoints> > const&, LHCh::FastAllocVector<Rich:Future:Rec:SegmentPhotonFlags, std:allocator<
Rich::Future:Rec:SegmentPhotonFlags> > const&, LHCh:FastAllocVector<Rich:PDPixelCluster, std:allo..

Rich:Future:Rec:QuarticPhotonReco:findMirror

Data(Rich:DetectorType, Rich:Side, ROOT:

Math:PositionVector3aD<ROOT:Math::Cartes...
‘solve<d

TrackRungeKutta
Extrapolator:
evaluateRKSte. ..

t(ROOT:Math::
n3D<double> ROOT:

st& ROOT:Math:PositionVector
arte!

h:Cartesian3D<double> ROOT:Math:

DefaultCoordinateSystemTag>&, ROOT:Math::
HPDPanel::PDWindowP

TracingUtils:

DisplacementVector3D<ROOT:Math:Cartesian3

DetectorType, ROOT:Math::PositionVector3D<
D<double> ROOT:Math::Defau

ROOT:Math::Plane3D:Normalize()

ROOT:

magnifyToGlo...

StatusC: de Gaudi:Functional:
Transformer<l 4Ch:FastAllocVector=d...
['! 051 838 432

1 3000 x [6000x

virtual thunk to Rich:Future:Ray
Tracing:traceToDetector(Rich:Dete...

Ray tracing photons through RICH mirror system to detector plane major CPU usage for the RICH
Simple geometrical calculation repeated many times. Should be easy to vectorise.
Uses ROOT GenVector library. (The ubiquitous Gaudi::XYZVector and Gaudi::XYZPoint types.)

Have previously tried internally vectorising (vertical) using libraries like Eigen. Results not too impressive.
Difficult to see how this approach can fully utilise SIMD capabilities.

Look instead at using Vc library. Provides Ve::float_v, Vc::double_v types that behave (more or less) like
float, double, but are vectors(arrays) of N values (N depends on SIMD level). Horizontal vectorisation.

11

Reflect Spherical - Scalar

template < typename POINT, typename WECTOR, typename FTYPE >
inline
typename std::.enable 1f< std::1s arithmetic<typename POINT: :Scalar:::wvalue &%
std::1s arithmetic{typename WECTOR::Scalar:::wvalue &&
std::1s arithmetic<FTYPE>: :wvalue, bool »::type
reflectSpherical { POINT& position,
VECTORS direction,
const POINTE& Cok,
const FTYPE radius)

1
constexpr FTYPE zero(0), two(Z.0), fourid. 0), half{0. 5);
const FTYEE a = direction. Magz();
const VECTOR delta = position - CoC;
const FTYPE b = two * direction.Dot({ delta);
const FTYEE ¢ = delta.MagzZ() - radius*radius;
const FTYPE discr = bh*h - four*a*c;
const hool 0K = discr » Eero;
if (0K)
i
const FTYPE dist = half + { std::sgrtidiscr) - b) 7 a;
A4 change position to the intersection point
position += dist * direction;
Ff reflect the wector
i r=1u- 2iunin r=reflection, uv=incident, n=normal
const VECTOR normal = position - CoC;
direction -= { two * normal Doti{direction) / normal. Mag2())} * normal;
h

return 0OK;

Reflect Spherical - Vectorised

template < typename POINT, typename WECTOR, typename FTYPE >
inline
typename std::enable 1f< lstd::1s arithmetic<typename POINT: :Scalar:::walue &&
Istd: :1s arithmetic<{typename VECTOR::Scalar:::wvalue &%
Istd: 15 arithmetic<FTYPE:: :wvalue,
typename FTYPE: :mask _type »::type
reflectSpherical { POINT& position,
VECTORSE direction,
const POINT& CoC,
const FTYPE radius)

const FTYPE two (2. 0%, four({d. 0), half{0.5);

const FTYPE a = direction. MagZ () ;

const WECTOR delta = position - CoC;

const FTYPE b = two * direction.Dot{ delta);
const FTYPE ¢ = delta MagZ{) - radius*radius;
FTYPE discr = b*bh - four*a*c;

typename FTVPE: :mask_type 0K = discr » FTYPE::Zerof();
1f { any of (0E))
i
A Zero out the negative walues in discr, to prewvent sgrt(-we)
discr(I0E) = FIVPE: :EZeroi);
Af compute the distance
const FTYPE dist = half + { sqrtidiscr) - b) / a;
/4 change position to the intersection point
position += dist * direction;
A& reflect the wector
i r=1u- 2lunln r=reflection, u=incident, n=normal
const WECTOR normal = position - CoC;
direction -= { two * normal Doti{direction) / normal MagZ())} * normal;

A4 return the mask indicating which results should be vsed
return 0K;

!

Vectorised Ray Tracing - Performance

« |dealised test application - photon reflection of first primary (spherical)
and then secondary (flat) mirrors - shows almost ‘perfect SIMD’ speed up.

AVX2 (4 double / 8 float)
Creating 9600 random photons ...
ROOT double 228752
Eigen double 242017 speedup 0.94519
Vc double 58243 speedup 3.92754
ROOT float 209756
Eigen float 212881 speedup 0.98532
Vc float 26539 speedup 7.90369

* Real world deployment, somewhat more complicated. ..

Ongoing ‘Parallel’ Efforts

» Studies ongoing to port expensive RICH tasks (photon §== i e e

reconstruction, ray tracing) to various ‘highly parallel’ gz = e o
architectures (R.Schwemmer, C.Quast, C.Faerber) '

-PositionVector3D<ROOT:Math::Cartes.

==2C853
SEESnEd

* KL (Knights Landing) - ‘Regular’ x86 CPU with
many cores and SIMD vector units.

« FPGAs. Very (very) parallel...

* Work ongoing, but results already encouraging and |
have resulted in some improvements which could be §

incorporated in the last release. RICH Kaon ID

* Speed up in the quartic reconstruction algorithm
due to replacement of an analytic solution with a
Newton Raphson approach.

Pion MisID Efficiency / %

- 0(40%) speed up !

e Clear example of the advantage of getting new people
involved.

Ka%?i ID Efficiency / J/? 0

Performance statistically identical

i)

Conclusions

- RICH Reconstruction ported to the upgrade ‘functional’ framework.
- Deployed and ready for 2017 data taking.
* Directly, and indirectly, has resulted in a significant improvement in CPU time.

* A factor of 2.5 w.r.t. 2016 reconstruction.

* RICH now a rather small fraction of overall reconstruction time.

