
RICH Status

C.Jones

1

Introduction
• Focus on reconstruction developments.

• Work still ongoing in the simulation, but not covered in detail here.  

• RICH in the upgrade has :-

• Upgraded photon detectors (MaPMTs replacing existing HPDs)

• Updated RICH1 optics (re-optimisation taking into account Aerogel removal).

• Fundamentally though, works in the same way. Same algorithms (currently) envisaged.

• Have had an ‘upgrade’ sequence running based on update detector description for a long
while. Formed basis of MC design work and TDR results.

• Present here recent developments using the upgrade Gaudi Framework.

• Migration to the ‘Functional’ framework

• CPU improvements to the RICH photon reconstruction

• First push towards fully utilising SIMD vectorisation

• Ready now and being deployed for 2017 data taking.

2

RICH Reconstruction Basics
RICH Detector Hits

• Raw Event Decoding
(HPD/MaPMT)

• Pixel Clustering
• Pixel Space Points

(global and local)

Tracks (Long, Downstream, Upstream)

• Radiator trajectories (segments)
• Ray traced PD panel impact points

(global and local frames)
• Cherenkov photon expected yields

and energy spectra
• Ray traced Cherenkov cones
• Geometrical efficiency
• Expected Cherenkov Angles
• Expected Cherenkov resolutions

Cherenkov Photon Candidates

• Reconstruction from pixels
and segments

• Predicted likelihood
contribution to each pixel

Global Likelihood Minimisation

• Compute pixel backgrounds
• Minimise global event

likelihood. Computes the Rich
‘DLL’ values.

3

Original Software Design
• Current C++ reconstruction dates back at least 10 years.

• Designed with very different ideas in mind to now

• Object oriented design was the next big thing.

• Parallel execution never entered the picture.

• Basic SIMD instructions may have been available, but never discussed.

• Different constraints from the framework.

• Originally no python configuration. Flat ‘job options’ files. Very limited.

• Lead to a software model which has served well, but is now showing its age.

• Two main parts to RICH design :-

• Reconstruction event model. Tracks, Segments, Pixels and Photons.

• Data provider tools. Event model object cache data and tool compute and fill on-
demand (‘lazy’ evaluation model).

4

“RichRecEvent”

5* Only {0,1,2} since Run2 due to Aerogel removal

RichRecSegments

RichRecTracks

1 track to
{0,1,2,3}*
segments

RichRecPixels

RichRecPhotons

1 pixel to
N photons

1 segment to
N photons

1 track to
N photons

Data Cache Example - ‘RichRecPhoton’

• m_geomPhoton : Encapsulates the photon reconstruction

• m_expPixel{Signal,Scatt}Phots : Cached data on expected detector signals.

• m_richRec{Segment,Pixel,Track} : Relations back to associated data objects

• Data only related to each other in that they all are associated to the same photon candidates.

• RichRecPhoton a small cache ! Segment class much more extensive.

6

Moving to the Future…
• Make the algorithms fully thread safe.

• Address design choices that hinder modern compiler optimisations.

• Algorithms that operate on const vector<Foo>& rather than tools on Foo*. Create
vector<Baa>.

• Move towards SOA rather than AOS designs (so small Foo and Baa objects, often just float).

• Remove monolithic event data model ‘cache’ objects. More, smaller, more focused data
objects. Composition when required using Range v3 library.

• Make use of AnyDataHandle to remove DataObject inheritance constraint.

• Move processing to algorithms. Use tools only where appropriate.

• Remove all monitoring (even basic tallies) from reconstruction algorithms. Keep streamlined.

• Simplify python configuration.

• Lower barrier for new people to contribute

• Conclusion - Start from scratch.

7

Status of Functional Migration
• Fully functional RICH reconstruction sequence using the new

framework available in latest Brunel release.

• In fact, is the default processing sequence for this years data
taking.

• Old sequence still available, as ‘backup’.

• Timing wise, new sequence is ~2.5 times faster* than that in the
Brunel released for the start of the 2016 data taking.

• Largely due to the adoption of guidelines to better format the data
how the CPU wants it, not the user. e.g. utilise SIMD vectorisation.

• Also in part due to some specific code improvements.

8

* Comparing Brunel v50r1 to v52r2, using same machine and 1000 event sample

9

SIMD (Single Instruction Multiple Data)

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

10

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

https://indico.cern.ch/event/258092/contributions/1588517/attachments/454175/629578/ACAT2014_ModernisingROOT_SWenzel.pdf

Ray Tracing Photons

• Ray tracing photons through RICH mirror system to detector plane major CPU usage for the RICH

• Simple geometrical calculation repeated many times. Should be easy to vectorise.

• Uses ROOT GenVector library. (The ubiquitous Gaudi::XYZVector and Gaudi::XYZPoint types.)

• Have previously tried internally vectorising (vertical) using libraries like Eigen. Results not too impressive.
Difficult to see how this approach can fully utilise SIMD capabilities.

• Look instead at using Vc library. Provides Vc::float_v, Vc::double_v types that behave (more or less) like
float, double, but are vectors(arrays) of N values (N depends on SIMD level). Horizontal vectorisation.

11

Reflect Spherical - Scalar

12

• POINT and VECTOR are just template types for, e.g.
Scalar XYZPoint<double> and XYZVector<double>

Reflect Spherical - Vectorised

13

• POINT and VECTOR are vectorised e.g., XYZPoint<Vc::double_v> and XYZVector<Vc::double_v>

• Effectively, think of each as being an ‘array’ of Vc::double_V::Size entries, operated on in parallel

Vectorised Ray Tracing - Performance
• Idealised test application - photon reflection of first primary (spherical)

and then secondary (flat) mirrors - shows almost ‘perfect SIMD’ speed up.

14

AVX2 (4 double / 8 float)

• Real world deployment, somewhat more complicated…

• Multiple mirror segments, HPD/MaPMT intersection. Not fully
vectorised yet.

• Nevertheless, already see ~33% speed up.

• First steps… Will significantly improve once we learn how to work
with SIMD vectorisation better.

Ongoing ‘Parallel’ Efforts
• Studies ongoing to port expensive RICH tasks (photon

reconstruction, ray tracing) to various ‘highly parallel’
architectures (R.Schwemmer, C.Quast, C.Faerber)

• KL (Knights Landing) - ‘Regular’ x86 CPU with
many cores and SIMD vector units.

• FPGAs. Very (very) parallel…

• Work ongoing, but results already encouraging and
have resulted in some improvements which could be
incorporated in the last release.

• Speed up in the quartic reconstruction algorithm
due to replacement of an analytic solution with a
Newton Raphson approach.

• O(40%) speed up !

• Clear example of the advantage of getting new people
involved.

15

Kaon ID Efficiency / %80 85 90 95 100

Pi
on

 M
is

ID
 E

ffi
ci

en
cy

 /
%

1

10

RICH Kaon ID
-15

-6.91919

1.16162

9.24242

17.3232

25.404

33.4848

Old Quartic
RichDLLk-RichDLLpi > cut
Long tracks | 3<P(GeV)<100 | 0.5<Pt(GeV)<100 | 30<TkAng(mrad)<300
Required Dets : AnyRICH
13087 Kaons in Acceptance

-15

-7.42424

0.151515

7.72727

15.303

22.8788

30.4545

New NR Quartic
RichDLLk-RichDLLpi > cut
Long tracks | 3<P(GeV)<100 | 0.5<Pt(GeV)<100 | 30<TkAng(mrad)<300
Required Dets : AnyRICH
13087 Kaons in Acceptance

RICH Kaon ID

Performance statistically identical

Conclusions
• RICH Reconstruction ported to the upgrade ‘functional’ framework.

• Deployed and ready for 2017 data taking.

• Directly, and indirectly, has resulted in a significant improvement in CPU time.

• A factor of 2.5 w.r.t. 2016 reconstruction.

• RICH now a rather small fraction of overall reconstruction time.

• Just the start…

• More improvements expected through further improved utilisation of CPU/
cache friendly data structures.

• So far have only touched ‘internal’ RICH data structures. 
Eventually the public event model (RichPID, tracks, Particles) will need to be
heavily updated.

16

