
LHCb streaming mixed optimization

N. Kazeev23 R. Neychev12 A. Ustyuzhanin123

1MIPT 2Yandex School of Data Analysis 3HSE

May 16, 2017

9th LHCb computing workshop

1 / 13

Streams as a trade-off

I User jobs can only be launched on a whole stream and have
to read the unneeded events

I The smaller the streams are, the faster the jobs run

I If an event belongs to several streams, the information is
duplicated

I The fewer streams there are, the less space is occupied

I Number of streams should not be too large
I Boundary cases:

I Best space — all lines in one stream
I Best time — each line owns its personal stream

2 / 13

Problem statement

Goal

Decrease both occupied space and computation time with some
trade-off with focus on space.

Conditions:

I Around nDST = 400 DST and nmDST = 1500 mDST lines

I Dataset: Stripping 28 Validation

I DST and mDST streams must not intersect

I Number of streams should be considered as the solution
parameter

Due to the independence of DST and mDST lines their
optimizations are threatened as independent sub-problems.

3 / 13

Previous and proposed solutions

Previous solution (presented on LHCb-week (March 2016))

I Based on lines clustering.

I Required using 93 streams — too many streams.

Suggested solution

I Based on time- and space metrics relaxation.

I Parametrized with number of streams.

The similar approach has already been applied to minimize reading
time for Turbostream. It allowed to reduce the reading time by
20%− 50% with the same space usage.

4 / 13

Time and space models

Stream is read as many times as many lines are in it. Every line is
assumed to be accessed with frequency pline . Time of each reading
is proportional to the number of events read. The time model
(T score):

T =
∑

stream

Nevents in stream ·

[∑
lines

pline

]
Occupied by stream space is proportional to the number of events
stored. The storage model (S score):

S =
∑

stream

Nevents in stream

To decrease the occupied storage and keep the time complexity,
the mixed optimization is used. The function to be optimized:

Combined score = α · T + (1− α) · S

5 / 13

Lines popularity

Lines access frequency is estimated depending on lines popularity
model. Currently, two models were used and compared:

I Uniform model.
I All lines are accessed with the same frequency.

I Streams-corresponding model.
I According to the statistics for Stripping 26, streams are

accessed with different frequencies. All lines within stream are
assumed to be accessed with the same frequency:
pline = stream access frequency

N lines in stream .

6 / 13

7 / 13

Lines popularity models comparison

1.00 1.05 1.10 1.15 1.20
S_score, ideal is 1

20

40

60

80

100

120

T_
sc

or
e,

 id
ea

l i
s 1

DST
2, uniform
2, by streams
3, uniform
3, by streams
4, uniform
4, by streams
5, uniform
5, by streams
6, uniform
6, uniform
6, by streams
7, uniform
7, by streams
Stripping 28

Lines shows mean T score for fixed S score; α increases from left
to the right in range [0.0005; 0.64]

8 / 13

Optimization results on DST data

1.00 1.05 1.10 1.15 1.20
S_score, ideal is 1

0

20

40

60

80

100

120

T_
sc

or
e,

 id
ea

l i
s 1

DST
Stripping 28
optimal
Best border
2 uniform
2 by streams
3 uniform
3 by streams
4 uniform
4 by streams
5 uniform
5 by streams
6 uniform
6 by streams
7 uniform
7 by streams

9 / 13

Optimization results on mDST data

1.0 1.1 1.2 1.3 1.4 1.5
S_score, ideal is 1

0

50

100

150

200

T_
sc

or
e,

 id
ea

l i
s 1

mDST
Stripping 28
optimal
Best border
2 uniform
2 by streams
3 uniform
3 by streams
4 uniform
4 by streams

10 / 13

N T score S score Sim

2 113.177 1.007 0.81
2 102.983 1.017 0.773
3 71.124 1.028 0.566
5 41.913 1.031 0.439
6 41.816 1.036 0.326
5 39.058 1.039 0.354
6 35.866 1.049 0.29
6 31.389 1.055 0.321
6 29.436 1.061 0.292
6 29.37 1.068 0.267
6 25.131 1.071 0.319
6 78.006 1.077 1

Table: DST best results

N T score S score Sim

2 208.134 1.097 0.522
2 187.046 1.104 0.556
2 166.726 1.124 0.615
2 166.157 1.162 0.768
2 161.614 1.178 0.671
2 153.983 1.182 0.694
3 135.647 1.199 0.388
3 132.821 1.26 0.48
3 125.535 1.266 0.412
3 123.621 1.273 0.696
3 122.198 1.294 0.477
3 118.307 1.297 0.435
3 157.259 1.308 1

Table: mDST best results

N is number of streams, Sim is similarity to Stripping 28
definitions. T and S scores are normalized by Stripping 28
corresponding scores. Last row is Stripping 28.

11 / 13

Summary

I An optimization method parametrized with number of streams
was developed.

I Relaxation of both T-score and S-score allowed to decrease IO
time and occupied space simultaneously.

I DST data: up to 6.5% S score decrease, up to 67% T score
decrease.

I mDST data: up to 16% S score decrease, up to 24% T score
decrease.

I Both considered line popularity models show comparable
results.

12 / 13

Framework overview

The existing framework allows to optimize any relaxed functional
using the provided data. Currently available:

I T-score

I S-score

I Combined score

Useful features:

I Modules constrained optimization

I Prescale support

I Line popularities support

Available with demo at branch demonstration Stripping 28
https://gitlab.cern.ch/YSDA/streams-optimization

13 / 13

https://gitlab.cern.ch/YSDA/streams-optimization

Backup

14 / 13

LHCb processing pipeline

Detector Trigger Farm Archive

Stream 1107

events/s
103-104

events/s

Stripping

HLT Stream 2

Stream 3

GRID stores1011 events in Run 1

Turbo stream

Lines decisions
G

lobal counters

15 / 13

Time and space models

Assuming each stream would be read as many times as lines are in
it and the time of each reading would be proportional to the
number of events read, the total reading time would be
proportional to:

T =
∑

stream

Nevents in stream · Nlines in stream

16 / 13

Storage model

According to the current finginds, all lines correspond to sum GS

or indicator GI groups. Event weight in stream is computed as
follows:

wevent-stream =
∑
gI∈GI

Ind(event has line from gI) ·WgI

+
∑

gS∈GS

Nlines from gS than contain event ·WgS , (1)

where Wg is a group ”weight”, Ind is an indicator function.
Therefore, the general formula for storage:

S =
∑

stream

(∑
event∈stream

wevent-stream

)

17 / 13

Time model relaxation

Instead of assigning the lines to streams, assume each line has a
probability to be in each stream: Lls , l-th line in the s-th stream.
Let ∆el ∈ {0, 1} be the indicator whether event e was selected by
line l . Then:

E [Nlines in stream] =
∑
l

Lls (2)

E [Nevents in stream s] =
∑
e

(
1−

∏
l

(1−∆elLls)

)
(3)

18 / 13

The approximated T

T̃ =
∑
s

E [Nlines in stream s] · E [Nevents in stream s] (4)

=
∑
s

[∑
l

Lls ·
∑
e

(
1−

∏
l

(1−∆elLls)

)]
(5)

In general, T̃ 6= E[T]. However, if all the assignments are definite
Lls ∈ {0, 1}, T̃ = T .
Hereinafter call T̃ T-score.

19 / 13

Time and space models

Assuming each stream would be read as many times as lines are in
it and the time of each reading would be proportional to the
number of events read, the total reading time would be
proportional to:

T =
∑

stream

Nevents in stream · Nlines in stream

There are several groups of lines with different event weights Wg .
So, the space can be estimate as:

S =
∑

stream

[∑
event∈stream

(∑
g∈groups

Ind(event has line from g) ·Wg

)]

20 / 13

Time and space models relaxation

Instead of assigning the lines to streams, assume each line has a
probability to be in each stream: Lls , l-th line in the s-th stream.
Let ∆el ∈ {0, 1} be the indicator whether event e was selected by
line l and ∆lg ∈ {0, 1} likewise for line-group. Then:

T̃ =
∑
s

E [Nlines in stream s] · E [Nevents in stream s] =

=
∑
s

[∑
l

Lls ·
∑
e

(
1−

∏
l

(1−∆elLls)

)]

S̃ =
∑
s

[∑
event∈s

(∑
gI∈GI

WgI ·
(
1 −

∏
l

(1−∆elLls∆lgI)
))]

21 / 13

Storage model relaxation

Let ∆lg ∈ {0, 1} be the indicator whether line l is in group g . As
for the time model:

P(event has line from gI) = 1−
∏
l

(1−∆elLls∆lg)

E(Nlines from g than contain event) =
∑
l

(∆elLls∆lg)

Therefore

S̃ =
∑
s

[∑
event∈s

(∑
gI∈GI

WgI ·
(
1−

∏
l

(1−∆elLls∆lgI)
)

+
∑

gS∈GS

WgI ·
∑
l

(∆elLls∆lgS)
)]

Hereinafter call S̃ S-score.

22 / 13

Solving the boundary conditions

Lls are probabilities so

I Lls ∈ [0, 1]

I A line must be on average assigned to a stream, so
∑

s Lls = 1

Let’s parameterise Lls :

Lls =
eAls∑
s e

Als
. (6)

This way Als can have any value. This trick is from deep learning
and is called softmax.

23 / 13

Mixed optimization

To decrease the occupied storage and keep the time complexity,
the mixed optimization is used. The function to be optimized:

Combined loss = α · T + (1− α) · S

Problems

I In T̃ and S̃ there is a sum over all the events
∑

e .

I Evaluating over all of them is too CPU consuming.

Solution: stochastic gradient optimization

I Choose random events batch of fixed size.

I Calculate gradient over the batch, make a descent step.

I Take the next batch, repeat until convergence.

24 / 13

Theano ad

http://deeplearning.net/software/theano/

Theano is a Python library that allows you to define,
optimize, and evaluate mathematical expressions
involving multi-dimensional arrays efficiently.

I Easy-to-use Python interface

I Fast evaluation: the expressions are put into C code and
compiled

I Transparent GPU support. Even faster evaluation.

I Symbolic differentiation – Theano does your derivatives

25 / 13

http://deeplearning.net/software/theano/

	Appendix

