

Distributed Computing for Run 3

- Most of the HLT output will be TURBO
 - Throughput? Let's assume 5 GB/s for the sake of this talk
 - $_{\rm A}$ This is already 4 times the "impossible" goal for ALICE in the early days of WLCG
 - One single online stream is sufficient
 - \boldsymbol{x} as discussed earlier this week
 - Run structure (1 hour max) as now for DQ and calibration purposes
- Will there still be some other streams?
 - Probably a TURCAL-like stream for calibration.
 - Any "to-be-reconstructed" stream (à la FULL stream)?
- TESLA will just be a conversion and streaming application
 - Lossless, i.e. no need to "reprocess"
 - All events go to at least one stream
- A few numbers then
 - □ 18 TB/run : 1000 files of 18 GB
 - * File size limited by what a job can download (don't expect much more)

- Mostly streaming TURBO data
 - Keeping the run granularity as now
- A possible model
 - First level processing
 - Produce 10 streams with a TESLA application
 - * Each file is then 1.8 to 2 GB on average
 - Second level processing
 - Merge and Stream all in one
 - Using 10 input files (18 GB)
 - \star Produce 10 streams with a specific streaming application
 - ✤ Each file again 1.8 to 2 GB
 - \Rightarrow Optionally further merge the streamed μ DST to reduce the overheads
 - Requirements
 - * Streams should be as even as possible in size
 - ☆ Overlap should remain at a reasonable level (< 20%)</p>
- Result for each run
 - 100 streams with 100 files of 2 GB each (or 20 files of 10 GB)

Next analysis steps

- Do like now, wild world, "chacun pour soi"
 - Each user chaotically runs jobs on its favourite stream
 - * 1% of the whole dataset
 - ☆ Still 180 GB per hour of data taking, or 300 TB per stream for a whole year
 - * How frequently can this be done?
 - Is this conceivable?
 - * How long would it take to run each job?
 - ☆ What if each user is doing that?
- Produce Ntuples (or whatever) centrally for (sub-)WGs
 - Back to the story of WG-productions
 - Requires organisation, coordination, preparation
 - * But can we avoid that?
 - * I don't think so
 - * Seems to be a unique opportunity
 - Caveats
 - * Can Ntuples be larger than the initial dataset, just because they are inefficient?
 - \Rightarrow How frequently should one run on the whole sample?

• Why?

Necessary to run on a sensible fraction of the datasets

- Even 10% is a few TB, hence few 1000's jobs!
 - * Can't run interactively... Direct batch submission is disappearing
 - * Who has run jobs on HTCondor at CERN? Who is willing?
- What is the future of ganga?
 - Manpower situation is critical
 - Functionality
 - * Users seem to always complain but in the end they manage... and don't help improving...
- o Should we develop a more LHCb/Dirac/Gaudi-centric job submission tool?
 - Revise user requirements
 - Clarify the use cases
 - * For example avoid copying from EOS to EOS if not needed, run on remote files (this is easy already now)
- Analysis data format
 - What are the requirements?
 - Use (py)ROOT, use GaudiPython / Bender

- Too many unknowns still
- Run2 is a unique opportunity to try and learn on how to deal with larger datasets in Run3
 - Not much progress in WG-production adoption since last workshops
 - It is a step to go, but there may be large benefits.
- Analysing like now with 10 times more data will not be possible
- More precise numbers would greatly help
 Don't I say that at every workshop?

