Hydra

A library for data analysis in massively parallel platforms

A. Augusto Alves Jr
Presented at 9th LHCb Computing Workshop, CERN, 15-19 May 2017

UNIVERSITY OF -K{

Cincinnati

1/23



Design and goals of Hydra

Basic functionalities and main algorithms

Performance

e Multidimensional numerical integration
e Phase-space Monte Carlo generation
e Interface to ROOT::Minuit2 and fitting

Summary

2/23



Motivation to deploy massively parallel platforms on HEP

e A large fraction of the software used in HEP is legacy designed single threaded, C++-03
and mono-platform routines.

e HEP experiments keep collecting samples with unprecedentedly large statistic.
e Data analyses get more and more complex...

e Processors will not increase clock frequency any more. The way to increase overall
performance is to deploy concurrency.

Hydra aims to address these issues, providing a collection of high-level algorithms, through a
modern interface, to enhance HEP software productivity and performance, keeping the
portability between GPUs and multicore CPUs.

3/23



Hydra is a header only templated C++ library designed to perform common HEP data
analyses on massively parallel platforms.

e It is implemented on top of the C++11 Standard Library and a variadic version of the

Thrust library.
e Hydra is designed to run on Linux systems and to use OpenMP, CUDA and TBB enabled

devices.

e It is focused on portability, usability, performance and precision.

4/23


https://github.com/andrewcorrigan/thrust-multi-permutation-iterator/tree/variadic
https://github.com/andrewcorrigan/thrust-multi-permutation-iterator/tree/variadic

Design and features

The main design features are:

e The library is structured using static polymorphism.
e There is absolutely no need to write explicit back-end oriented code.

Clean and concise semantics.

e Interfaces are easy to use correctly and hard to use incorrectly.

° MVAII supported back-ends can run concurrently in the same program using the
suitable pO|iCieS: hydra::omp::sys , hydra::cuda: :sys, hydra::tbb::sys , hydra::cpp::sys ,
hydra::host::sys and hydra::device::sys

The same source files written using Hydra and standard C++ compile for GPU, CPU or even
both, just exchanging the extension from .cu to .cpp and one or two compiler flags.

5/23



Functionalities

Data fitting and Monte Carlo generation

e Interface to ROOT::Minuit2 e Multidimensional p.d.f. sampling.
minimization package. e Parallel function evaluation over
e Phase-space generator. multidimensional datasets
Numerical integration
e Flat Monte Carlo sampling. ° &Gauss—Kronrod quadrature.
e Vegas-like self-adaptive importance
sampling (Monte Carlo). . MrGenz—Malik quadrature.

6/23



Functors

e Hydra adds features and type information to generic functors using the CRTP idiom.

e A generic functor with N parameters is represented like this:

1 struct MyFunctor: public hydra::BaseFunctor<MyFunctor,double,N>

2 A

4 // implement the Evaluate() method

5 template<typename T> __host device__

6 inline double Evaluate(T* x) { /*actual calculation*/ }

7}

All functors deriving from h dra: :BaseFunctor<Func,ReturnType,NPars> Can be cached, used to
g y ypP
perform fits and to compose more complex mathematical expressions.

7/23



Arithmetic operations and composition with functors

All the basic arithmetic operators are overloaded. Composition is also possible. If &4, B and ¢
are Hydra functors, the code below is completely legal.

2 //basic arithmetic operations

3 auto A_plus_B = A + B; auto A_minus_B A - B;
4 auto A_times_B = A * B; auto A_per_B = A/B;

5 //any composition of basic operations

6 auto any_functor = (A - B)*(A + B)*(A/C);

7 // C(A,B) is represented by:

8 auto compose_functor = hydra::compose(C, A, B)

e The functors resulting from arithmetic operations and composition can be cached as well.

e No intrinsic limit on the number of functors participating on arithmetic or composition

mathematical expressions. 8/23



Support for C++11 lambdas |

Lambda functions are fully supported in Hydra.

e The user can define a C++11 lambda function and convert it into a Hydra functor using

hydra: :wrap_lambda()

double two = 2.0;

//define a simple lambda and capture "two"

auto my_lambda = [] __host__ __device__(doublex x)
{ return two*sin(x[0]1); };

//convert is into a Hydra functor

auto my_lamba_wrapped = hydra::wrap_lambda(my_lambda) ;

e CUDA 8.0 supports lambda functions in device and host code.

9/23



Support for C++411 lambdas Il wett

Now it is possible to add named parameters to C++11 lambdas.

N

auto multiplier = hydra::Parameter::Create() .Name("multiplier").Value(2.0);

3
4 //define a simple lambda and capture "two"

5 auto my_lambda = [] __host__ __device__(size_t n, hydra::Parameter* param, double* x)
6 { return param[0]*sin(x[0]); };

7

//convert is into a Hydra functor

oo

9 auto my_lamba_wrapped = hydra::wrap_lambda(my_lambda, multiplier);
10

11 //set the multiplier to a different value

12 my_lamba_wrapped.SetParameter (0, 3.0);

13

10/23



Data containers

e hydra::Point represents multidimensional data points.

° Whydra: :PointVector looks like an array of structs, but actually data is stored in

structure of arrays layout.

1 //two dimensional point
2 typedef hydra::Point<GReal_t, 2> point_t;

™

//allocate a two dimensional data set on the gpu
hydra: :PointVector<point_t, hydra::cuda::sys> data_cuda(le6);

//process data_cuda

o I O w»

9 //copy the data to the CPU memory space
10 hydra::PointVector<point_t, hydra::host::sys> data_h(data_d);

11/23



Vegas-like multidimensional numerical integration

The VEGAS algorithm implemented in Hydra now supports training@t

10

11

12

13

14

constexpr size_t N=10;

//VegasState hold resources and configurations

VegasState<N, hydra::device::sys> State_d(_min, _max);
State_d.SetIterations( 10 );

State_d.SetMaxError( 0.001 );

State_d.SetCalls( 5e5 );

State_d.SetTrainingCalls( 1le4 ); //<-- set the number of training samples

State_d.SetTrainingIterations(2); //<-- number of training iterations

//Vegas integrator object
Vegas<N, hydra::device::sys> Vegas_d(State_d);

//integrate a 10D Gaussian

Vegas_d.Integrate(Gaussian);
gas- & ¢ ) 12/23




Vegas-like multidimensional numerical integration

Integrating a normalized Gaussian distribution in 10 dimensions.

= e T m
2 C ] 7 3 >
% L R LR N R Y ] z F 1. g
I 1 L e e £ J
2 ] §30000— 3 4
LI ] T 1 2
0.9 | a £ —12 O
Ea ] 250001 1 E3
L | 7] E 1 H
[ ] £ —wo g
0.8 20000 1 &
[ ] £ —Js
F j 15000 ]
0.7] £ ]
[ ] F —e
Eyl ] C —e- GPU m|
ot ] E
[ ey ] 10000 - CPU 1
0. — C — -1 —
ri —e— lteration result 1 £ speed-up B
r 1 5000(— ]
rl —— Cumulative result ] £ ]
0 F —2
F ] ot Ix10°
FPRTUPLFPI VLSOV FVH P PN TN VS S0 1000 15007 2000 2500 3000 300 400 4600
Iteration

System configuration:

e GPU model: Tesla K40c
e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 2.50GHz (one thread) 13/23



Phase-Space Monte Carlo

e New version is about 4x faster.

° Method hydra: :PhaseSpace: : AverageOn(...) to calculate the average and variance
of an arbitrary function over the phase-space.

1 //Masses of the particles

2 hydra::Vector4R Mother (mother_mass, 0.0, 0.0, 0.0);

3 double Daughter_Masses[3]{daughterl_mass, daughter2_mass, daughter3_mass };
4 //Create PhaseSpace object

5 hydra::PhaseSpace<3> phsp(Mother_mass, Daughter_Masses);

//Allocate the container for the events

hydra: :Events<3, device> events(ndecays) ;

o N O

9 //Generate
10 phsp.Generate(Mother, events.begin(), events.end());

14/23



Phase-Space Monte Carlo

dalitz

E - - oy E ]
TF - Ees 10007 [ 300
200 venx  2an e [ ]
s T -H-H'"" Meany 165 £ L ]
r ""‘-h..‘_ c g b
[y Supevx 1105 g
201 savevy 303 8 10° 250
3. 30 F i
[y F ]
1] ,'.. 25¢ L —:200
i 17 ]
E 20C E —150
r 15¢ L i
r 100
L 10 ]
b 10 E = GPU ]
L r -e-CPU —50
F 50 [ 1
k — speed-up b
[ o T b b s oo oo b b dxa0’
X 1 2 3 4 5 6 7 8 9 10
Number of events

System configuration:

e GPU model: Tesla K40c
e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 2.50GHz (one thread)

peed-up GPU vs CPU

15/23



Interface to Minuit2

Hydra implements an interface to ROOT::Minuit2 that parallelizes the FCN calculation.

This dramatically accelerates the calculation over large datasets.

The pdfs are normalized on-the-fly using analytical or numerical integration algorithms
provided by Hydra.

Data is passed using hydra: :PointVector.

&More intuitive API. Not necessary to registry previously the parameters any more.

2 //get the FCN
3 auto fFCN = hydra::experimental::make_loglikehood_fcn(model, some_data);
4 ROOT::Minuit2::MnMigrad migrad_d(fFCN, fFCN.GetParameters().GetMnState(), strategy);

16/23



Interface to Minuit2

'

o N O »

10

11

12

13

14

15

// Model = N, * Gaussian + N, * Exponential

//component pdfs

GaussAnalyticIntegral GaussIntegral(min, max);
ExpAnalyticIntegral ExpIntegral(min, max);

auto Gaussian_PDF = hydra::make_pdf (Gaussian, GaussIntegral);

auto Exponential PDF = hydra::make_pdf (Exponential, ExpIntegral);

//add the pds to make a extended pdf model
std::array<hydra::Parameter*, 3> yields{NGaussian, NExponentiall};
auto Model = hydra::add_pdfs(yields, Gaussian_PDF, Exponentia_PDF );
//get the FCN

auto Model_FCN = hydra::make_loglikehood_fcn(Model, data_d);

//pass the FCN to Minuit2

17/23



Interface to Minuit2

20 million event maximum likelihood unbinned fit.

Timing:

- o e Fit on GPU: 4.865 seconds
e Fit on CPU: 299.867 seconds

e Speed-up: ~62x
System configuration:

e GPU model: Tesla K40c

e CPU: Intel® Xeon(R) CPU E5-2680 v3 @
R 2.50GHz (one thread)

18/23



Summary

Hydra's development has been supported by the National Science Foundation under the grant
number PHY-1414736.

e The project is hosted on GitHub:
https://github.com/MultithreadCorner/Hydra
e The package includes a suite of examples.

e It is being used on the measurement of the Kaon mass at LHCb.

e Hydra was recently presented at NVidia's GTC 2017
e The project got a Google Summer of Code (GSoC) slot to port the library to Python.

Please, visit the page of the project, try it out, report bugs, make suggestions... Thanks!

19/23


https://indico.cern.ch/event/590880/contributions/2485492/
https://gputechconf2017.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=110110
https://summerofcode.withgoogle.com/dashboard/project/6669304945704960/overview/

Backup



Phase-Space Monte Carlo

350

Duration [ms]

300
System configuration: 250

e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 200
2.50GHz x 48

150
100

50

G L1l ‘ Ll ‘ LLLl ‘ LLLl ‘ LLLl ‘ LLLl ‘ LLLl ‘ LLLl ‘ LLLl ‘ L1l
5 10 15 20 25 30 35 40
Number of OpenMP threads




Phase-Space Monte Carl0

Duration [ms]

10[

GPU vs OpenMP

+-GPU s
- CPU ]
—speed-up|

2
Cl b b oo b e oo ko’

8 9 10
Number of events

System configuration:

e GPU model: Tesla K40c

e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 2.50GHz x 48

Speed-up GPU vs CPU

Duration [ms]

GPU vs TBB

6
- GPU 4
- CPU
—speed-up| ],

1, P I Y B PR PN BT I o

3 4 5 6 7 8 9 10

Number of events

Speed-up GPU vs CPU



Vegas-like multidimensional numerical integration

0160 L . L

[ms]

on

[T1T1®

4500

Durati

4000

/’/-

/’

System configuration: 3500

e CPU: Intel® Xeon(R) CPU E5-2680 v3 @ 3000
2.50GHz x 48

2500

2000

1500

LY

e s

0 5 10 15 20 25 30 35 40
Number of OpenMP threads

1000



	Appendix

