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Not a status report

The journey is more interesting
– What choices where made ?

– Why ? 

– In practice, how were they applied ?

– Were they good choices ? (make a guess…)

● I hope to give you some thoughts material, not 
a solution 



  

Person power

Hence a work going slowly in a world 
changing quickly...



  

LHCbDIRAC

● Services
– Frontend

– Stateless

– Easy to duplicate

● Agents
– Periodically executed tasks

– Cannot always duplicate
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Current situation

Host A

FileCatalog

BKK

Transformation
Manager

Host B

FileCatalog

Request 
Manager

Proxy Manager

● Static installations
● Placement optimization 

problems
● Low availability
● Painful updates
● Risk of heterogeneity in the 

configuration
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I have a dream

Let “something” 
run it “somewhere” 
for you
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How ? 

Promised land = Orchestrator + Containers
● Containers: package your application, and 

ship it all
● Orchestrator: runs “somewhere” what you 

tell it to.
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Let’s package LHCbDIRAC

● Docker, because de facto standard
● Registry integrated to CERN gitlab



9

Let’s package LHCbDIRAC

● What do you put in your container?
– Ideally, everything...

● But maybe not so ideal:
– Secrets

– Configurations

– Quickly changing information
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Let’s package LHCbDIRAC

● LHCbDIRAC relies a lot on the concept of host for its 
core infrastructure
– Quite antagonist with “running anywhere”

● Inside the container: just the code/binaries
● From the host:

– Certificate

– CRLS

– Configuration

● One image to run any setup anywhere
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Orchestration

● Quite a hype
– Give it resources and todo list, and let it handle it

● Started a year ago: things have changed 
(quickly)

● 3 main actors:
– Docker swarm

– Kubernetes

– Mesos
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Orchestration

● Docker swarm: seemed the least flexible with 
least features

● Kubernetes: looks good, but very service oriented
● Mesos: 

– Very modular

– Very generic

– Solid expertise from RAL admin (Andrew Lahiff)

– It’s a bazooka (and I like bazooka)
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● Runs “tasks” on “slaves”
● “Slaves” have “resources” to offer (cpu, 

mem, etc)
● “Resources” are offered to “Frameworks”
● “Frameworks” contains your work 

description
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Orchestrate LHCbDIRAC

● Certification setup: 
– No impact on production

– Still very representative

● Focus on services first:
– Stateless

– Easily moved and duplicated

– Can still have “bare metal (on a VM) installation” 
as failover
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Marathon

● Distributed init.d for long-running services
● Web + rest interface
● Placement constraints
● Easy scaling
● Rolling upgrades
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DFC in Marathon
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DFC in Marathon
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Good ! 

● Easy ! 
– Master: Mesos + Marathon daemon

– Slave: Mesos agent + docker daemon

● Now let me just sort out one or two easy 
details…
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Clusterize the master

● Zookeeper
● Several masters
● Choose a leader
● Quorum decision
● Failover
● Also for Marathon ! 
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We are done ! 

Well, not really yet...
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Service discovery

● What is running ? Where is it ? How do I access it ?
● Marathon-lb? No, remember, I like lego
● Consul:

– Service discovery + health check (see later)

– Adds a service on every masters and slaves

– Need to register your services: Mesos-consul  (runs as a  
task in Marathon :-) )

– Use the info: Consul-template (go templating language)
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Consul
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Use HAProxy as a gateway to redirect to the correct 
containers



24

Health monitoring

● Marathon:
– Failed container are restarted automatically

– You can monitor the behavior of your container

● Consul:
– Unhealthy entities not returned when Consul is queried

– Host: nagios checks (generates Mesos slave whitelist)
– Services: Docker exec/HTTP/TCP (generates HAProxy 

conf)



25

Performance monitoring

● The users are happy, but you ?
● Performance monitoring:

– Consul + custom script + influxdb + grafana

– Still not completely convinced...
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Logging

● “ssh myhost; grep error /var/log/myService.log” 
does not really work anymore

● You need a central logging:
– Need an infrastructure (Logstash/Elasticsearch). 

Where do you get it from ?

– Either your code is instrumented

– Or you have to capture the output of your container 
and ship it (docker-gen + filebeat)
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Persist it: puppet

Be ready to invest quite some time if you are not puppet 
fluent
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Security

● Agents and framework are authenticated with 
shared secrets (Teigi is great!)

● IPTables to open the management ports only 
within the cluster

● No SSL/TLS communication (would require 
special compilation)

● Web app: no nice authentication provided out of 
the box 
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Secure the web interface: SSO

● Hide your web app behind an 
Apache front end

● But SSO:
– Supports only one app per machine

– Forces you to disable SELinux 
(!!!!!!!!!!!!)

– Requires manual registration 
(cannot do it all In puppet)

● Result in complex Apache config 
and hacking Mesos/Maraton web 
apps → still not perfect
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Operational aspects

● The web interface is awesome for routinely aspects 
– Scale up/down a service

– Add/remove a service

– Find out on which machine a given service is running

– etc

● More exceptional operations are better done with 
REST interface
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Operational aspects

● Deploying a new LHCbDIRAC release:
– Creating the release tarball and put it on AFS

– Build and publish the docker image

– Update the running version →needs to be done for each task 
definition

● Gitlab-ci does it all for us ! 
– Tag in LHCbDIRAC triggers build and release of tarball and 

docker image

– Commit in another repository updates the running 
configuration of Marathon
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“User/GEOC” point of view

● Overall: really great
– High availability

– No more heterogeneity problem

– Releases so much easier

– No placement problems

– Nice web interface (for viewing)

– One json file to administrate everything

– It all seems simple 
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“Infrastructure” point of view
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“Infrastructure” point of view

● Do not underestimate the complexity of it all
– Requires quite some sys/net admin skills

– It’s not just one RPM to install

– The underlying infrastructure ends up being 
really big

– Everything can fail at once

● Writing doc is not enough, you need to train 
people
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Where do we stand today?

● The cluster meets its purpose and is stable
● Everything in puppet
● Certification services are running on it
● Releases are now easy and quick
● Almost nothing is LHCbDIRAC specific !! :-)
● Still some polishing needed:

– Monitoring (working solution, but not convinced)
– Logging (working, but better coming)
– Pointed out some bugs in DIRAC
– Persistent data is a problem

● Need to train the team
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Would I do it this way again?

● YES ! 
– Extremely instructive:

● Skills ++ for me :-)
● Many lessons learned

– We have a working system !!

– Side effect improvements of the production system

– Docker images available (dev, hackathon, tests, 
etc)
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Should you do it the same way?

● Things are moving quickly out there
– Kubernetes: moving at an incredible speed

– DCOS: Mesos based full system in a box

– Docker swarm: better and better (for some use cases)

● One cluster to rule them all ?
– Maybe not… 

– CERN Magnum infrastructure improved a lot

● In any case: think carefully, and really, talk to people
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