

Containers in LHCbDIRAC...

… or “How a small idea can turn into a big amount
of work”

Christophe HAEN
9th LHCb computing workshop

19/05/2017

Not a status report

The journey is more interesting
– What choices where made ?

– Why ?

– In practice, how were they applied ?

– Were they good choices ? (make a guess…)

● I hope to give you some thoughts material, not
a solution

Person power

Hence a work going slowly in a world
changing quickly...

LHCbDIRAC

● Services
– Frontend

– Stateless

– Easy to duplicate

● Agents
– Periodically executed tasks

– Cannot always duplicate

5

Current situation

Host A

FileCatalog

BKK

Transformation
Manager

Host B

FileCatalog

Request
Manager

Proxy Manager

● Static installations
● Placement optimization

problems
● Low availability
● Painful updates
● Risk of heterogeneity in the

configuration

6

I have a dream

Let “something”
run it “somewhere”
for you

7

How ?

Promised land = Orchestrator + Containers
● Containers: package your application, and

ship it all
● Orchestrator: runs “somewhere” what you

tell it to.

8

Let’s package LHCbDIRAC

● Docker, because de facto standard
● Registry integrated to CERN gitlab

9

Let’s package LHCbDIRAC

● What do you put in your container?
– Ideally, everything...

● But maybe not so ideal:
– Secrets

– Configurations

– Quickly changing information

10

Let’s package LHCbDIRAC

● LHCbDIRAC relies a lot on the concept of host for its
core infrastructure
– Quite antagonist with “running anywhere”

● Inside the container: just the code/binaries
● From the host:

– Certificate

– CRLS

– Configuration

● One image to run any setup anywhere

11

Orchestration

● Quite a hype
– Give it resources and todo list, and let it handle it

● Started a year ago: things have changed
(quickly)

● 3 main actors:
– Docker swarm

– Kubernetes

– Mesos

12

Orchestration

● Docker swarm: seemed the least flexible with
least features

● Kubernetes: looks good, but very service oriented
● Mesos:

– Very modular

– Very generic

– Solid expertise from RAL admin (Andrew Lahiff)

– It’s a bazooka (and I like bazooka)

13

● Runs “tasks” on “slaves”
● “Slaves” have “resources” to offer (cpu,

mem, etc)
● “Resources” are offered to “Frameworks”
● “Frameworks” contains your work

description

14

Orchestrate LHCbDIRAC

● Certification setup:
– No impact on production

– Still very representative

● Focus on services first:
– Stateless

– Easily moved and duplicated

– Can still have “bare metal (on a VM) installation”
as failover

15

Marathon

● Distributed init.d for long-running services
● Web + rest interface
● Placement constraints
● Easy scaling
● Rolling upgrades

16

DFC in Marathon

17

DFC in Marathon

18

Good !

● Easy !
– Master: Mesos + Marathon daemon

– Slave: Mesos agent + docker daemon

● Now let me just sort out one or two easy
details…

19

Clusterize the master

● Zookeeper
● Several masters
● Choose a leader
● Quorum decision
● Failover
● Also for Marathon !

20

We are done !

Well, not really yet...

21

Service discovery

● What is running ? Where is it ? How do I access it ?
● Marathon-lb? No, remember, I like lego
● Consul:

– Service discovery + health check (see later)

– Adds a service on every masters and slaves

– Need to register your services: Mesos-consul (runs as a
task in Marathon :-))

– Use the info: Consul-template (go templating language)

22

Consul

23

Use HAProxy as a gateway to redirect to the correct
containers

24

Health monitoring

● Marathon:
– Failed container are restarted automatically

– You can monitor the behavior of your container

● Consul:
– Unhealthy entities not returned when Consul is queried

– Host: nagios checks (generates Mesos slave whitelist)
– Services: Docker exec/HTTP/TCP (generates HAProxy

conf)

25

Performance monitoring

● The users are happy, but you ?
● Performance monitoring:

– Consul + custom script + influxdb + grafana

– Still not completely convinced...

26

Logging

● “ssh myhost; grep error /var/log/myService.log”
does not really work anymore

● You need a central logging:
– Need an infrastructure (Logstash/Elasticsearch).

Where do you get it from ?

– Either your code is instrumented

– Or you have to capture the output of your container
and ship it (docker-gen + filebeat)

27

Persist it: puppet

Be ready to invest quite some time if you are not puppet
fluent

28

Security

● Agents and framework are authenticated with
shared secrets (Teigi is great!)

● IPTables to open the management ports only
within the cluster

● No SSL/TLS communication (would require
special compilation)

● Web app: no nice authentication provided out of
the box

29

Secure the web interface: SSO

● Hide your web app behind an
Apache front end

● But SSO:
– Supports only one app per machine

– Forces you to disable SELinux
(!!!!!!!!!!!!)

– Requires manual registration
(cannot do it all In puppet)

● Result in complex Apache config
and hacking Mesos/Maraton web
apps → still not perfect

30

Operational aspects

● The web interface is awesome for routinely aspects
– Scale up/down a service

– Add/remove a service

– Find out on which machine a given service is running

– etc

● More exceptional operations are better done with
REST interface

31

Operational aspects

● Deploying a new LHCbDIRAC release:
– Creating the release tarball and put it on AFS

– Build and publish the docker image

– Update the running version →needs to be done for each task
definition

● Gitlab-ci does it all for us !
– Tag in LHCbDIRAC triggers build and release of tarball and

docker image

– Commit in another repository updates the running
configuration of Marathon

32

“User/GEOC” point of view

● Overall: really great
– High availability

– No more heterogeneity problem

– Releases so much easier

– No placement problems

– Nice web interface (for viewing)

– One json file to administrate everything

– It all seems simple

33

“Infrastructure” point of view

34

“Infrastructure” point of view

● Do not underestimate the complexity of it all
– Requires quite some sys/net admin skills

– It’s not just one RPM to install

– The underlying infrastructure ends up being
really big

– Everything can fail at once

● Writing doc is not enough, you need to train
people

35

Where do we stand today?

● The cluster meets its purpose and is stable
● Everything in puppet
● Certification services are running on it
● Releases are now easy and quick
● Almost nothing is LHCbDIRAC specific !! :-)
● Still some polishing needed:

– Monitoring (working solution, but not convinced)
– Logging (working, but better coming)
– Pointed out some bugs in DIRAC
– Persistent data is a problem

● Need to train the team

36

Would I do it this way again?

● YES !
– Extremely instructive:

● Skills ++ for me :-)
● Many lessons learned

– We have a working system !!

– Side effect improvements of the production system

– Docker images available (dev, hackathon, tests,
etc)

37

Should you do it the same way?

● Things are moving quickly out there
– Kubernetes: moving at an incredible speed

– DCOS: Mesos based full system in a box

– Docker swarm: better and better (for some use cases)

● One cluster to rule them all ?
– Maybe not…

– CERN Magnum infrastructure improved a lot

● In any case: think carefully, and really, talk to people

38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

