Parallelizat of of ROOT Machine Learning Methods

Pourya Vakilipourtakalou

Supervisors: Prof. Lorenzo Moneta

Prof. Sergei Gleyzer

Overview

- Machine Learning
- ROOT
- TMVA
- Cross Validation
- Parallelization
- Outlook

Machine Learning

Teaching the computers to do something exactly like the way people learn.

How do people learn?

And this is Machine Learning!

Dat a Alg orit hm

D at a Out put

> W e

Out put

Trai ned Alg orit hm

Machine Learning

- An example of classification
- •X1 → age of the patient
- •X2 → size of the tumor
- Y → output : Malignant or Benign → 0 or 1
- •Proposing a function like H(X1,X2) like aX1 + bX2 → it can be anything
- Try to find optimal a and b

Machine Learning

More Physical Example

- •X → vector of Kinematic Variables
- Y → output : Higgs (Signal) or Background → 0 or 1
- Proposing a function like F(X)

ROOT, Machine Learning -> TMVA

- Toolkit for Multivariate Data Analysis
- Bunch of methods that provides a ROOTintegrated machine learning environment
- It includes Rectangular cut optimization, Boosted/Bagged decision trees, Artificial neural networks, ...

TMVA:

Training Phase → Training the method on known dataset

Application Phase → Applying the trained method to unknown dataset

Training Phase

- Create the Factory → The connection between the user and TMVA
- Giving the Training/Test trees
- Register input variables (Features)
- Select the MVA methods from the Factory that we are going to train on the data set
- Book, Train and Test the Mesthod

Cross Validation

Cross Validation: PlotROC()

ROC →Receiver Operating Characteristic: in Statistic graphical plot that illustrates the performance of a classifier

Parallelization

ROOT Classes for Parallelization

- ThreadPool
 - →Multithreading
- TProcPool
 - **→Multiprocessing**

Multithreading →More difficult to **Implement: needs** locking → no Global ^{S15}

Outlook

Parallelization of different methods like BDT → Boosted Decision Tree

Conclusion

Thank you all very much for your attention!

