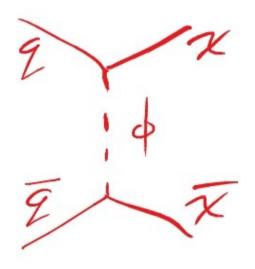
Theory Summary of T-channel Models

LHC DMWG Meeting – Sept 2016


Anthony DiFranzo Rutgers University

T-Channel Models

$$\mathcal{L} \sim g[SM][DM][med]$$

Gives unique t-channel DM production at LHC

e.g.
$$[SM] = \text{quark}, [DM] = \chi, [med] = \phi$$

Must make this gauge invariant

Mediator must be a color triplet, at the very least

Collider Searches

Mono-jet

Di-jets + MET

Produced entirely through QCD. Can exclude some some regions in the DM-mediator mass plane!!

Mono-W/Z

DM and/or mediator carry EW charges, non-trivial contributions to other mono-X channels

[Bell, Cai, Leane arxiv:1512.00476]

Direct Detection and Relic

S-channel Direct Detection

T-channel Relic/Annihilation

Model Possibilities

Required: Mediator is colored

Options for mediator and DM:

- One boson, one fermion
- Either/both carry EW charges
- Flavor structure → MFV!

K-K oscillation

Models: Colored Scalars

• Squark-like: [Chang et.al. 1307.8120, An et.al. 1308.0592, Bai et.al. 1308.0612, Ko et.al. 1605.07058]

mediator transforms exactly as corresponding quark as well as their flavor structure:

$$\tilde{u}: (3,1)_{2/3} \quad \tilde{d}: (3,1)_{-1/3} \quad \tilde{q}: (3,2)_{1/6}$$

$$g_{ij}\tilde{u}_i^* \bar{\chi} P_R u_j \quad g_{ij}\tilde{d}_i^* \bar{\chi} P_R d_j \quad g_{ij}\tilde{q}_i^* \bar{\chi} P_L q_j \quad (+h.c)$$

• Flavored DM: [Agrawal, Blanchet, Chacko, Kilic arXiv:1109.3516]

move flavor indices to DM field instead

e.g.
$$g_{ij}\tilde{u}^*\bar{\chi}_i P_R u_j$$

Models: Colored Vectors

$$\mathcal{L} \sim g_{ij} G^{\prime \mu} \bar{\chi}_i \gamma_\mu q_j$$

UV completion: embed SM into a larger gauge group which breaks spontaneously

$$\mathbb{G} \to SU(3)_C \times \mathbb{H}$$

- Breaking generates:
 - Massive colored vectors: $\sim G'^{\mu} \bar{\chi}_i \gamma_{\mu} q_j$
 - Massive uncolored vectors: $\sim V^{\mu} \bar{q}_i \gamma_{\mu} q_j, V^{\mu} \bar{\chi}_i \gamma_{\mu} \chi_j$

Squark-like Mediator

[AD, Tait, Rajaraman, Nagao arXiv:1308.2679]

Look at right handed up-type scalar

$$g_{DM}\delta_{ij}\tilde{u}_i^*\bar{\chi}P_Ru_j$$

- With Dirac DM
- explore dijet+met channel

[CMS arXiv:1303.2985]

Squark-like: Dijet vs Mono-jet

[Papucci, Vichi, Zurek arXiv:1402.2285]

Squark: Direct Detection

$$\mathcal{M} = \frac{ig_{DM}^2}{8(M_{\tilde{u}}^2 - M_{\chi}^2)} [(\underline{\bar{\chi}}\gamma^{\mu}\chi)(\bar{u}\gamma_{\mu}u) - (\underline{\bar{\chi}}\gamma^{\mu}\gamma^5\chi)(\bar{u}\gamma_{\mu}\gamma_5u)]$$

Spin-Independent Spin-Dependent

Spin-Independent Limits XENON100 arXiv:1207.5988

DD is much more constraining here

Collider searches still necessary

- 1) Colliders not sensitive to astrophysical uncertainties like DD
- 2) Can reach below DD threshold
- 3) Many well motivated variations exist which suppress DD bounds

Squark: Majorana DM

$$\mathcal{M} = \frac{ig_{\scriptscriptstyle DM}^2}{8(M_{\tilde{u}}^2 - M_\chi^2)} [(\bar{\chi}\gamma^\mu\chi)(\bar{u}\gamma_\mu u) - (\bar{\chi}\gamma^\mu\gamma^5\chi)(\bar{u}\gamma_\mu\gamma_5 u)]$$
 Spin-Independent Spin-Dependent

For Majorana DM, leading term vanishes. Only SD and velocity suppressed terms remain.

Spin-Dependent XENON100, arXiv:1301.6620

Top-philic models

- Top-flavored DM, light stops, etc
- Changes to Phenomenology:
 - DD is loop-level
 - No available tree-level mono-jet signature, only ttbar+met final state

Conclusions

- T-channel models are well motivated and distinct from other DM models
- This simplified model not only provides valid predictions for DM production at the LHC, it also predicts new phenomena to search for
- There's still rich phenomena to explore, especially in regards to flavor physics

Backup

Predicted Annihilation Cross Section - u $_{\rm R}$ Model for Majorana DM

