Prompt Lepton-Jets from Decays of Low-Mass Dark Gauge Bosons

LHC Dark Matter Working Group Sept 20 2016

Miriam Diamond University of Toronto ATLAS Group

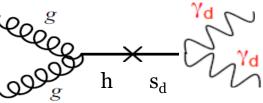
Introduction

- Many BSM theories predict dark gauge boson as mediator between hidden and visible sectors
- Collider production of **low-mass** dark gauge boson mediator?
 - Low-mass \rightarrow boosted \rightarrow highly-collimated decay products
 - Decaying back to SM with sizeable BR → dileptons (and/or light hadrons) in final state
 - Short-lived \rightarrow prompt decay (no displaced vertex)

Prompt "Lepton-Jet" Signature Smoking Gun

Lepton-Jet (LJ): collimated jet-like structure containing pair(s) of muons and/or electrons (and/or light hadrons)

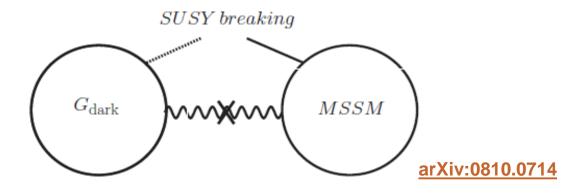
Outline


- Low-Mass Dark Gauge Boson Search Motivations
- Low-Mass Dark Gauge Boson Decays
- Lepton-Jet Search Challenges
- Lepton-Jet Search Strategies
- Prompt Lepton-Jet Search Results, Run 1
 - ATLAS
 - CMS
- Potential For Run 2

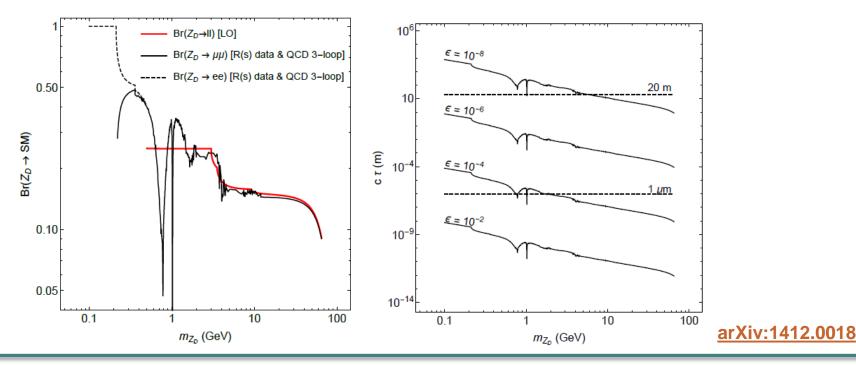
Search Motivations

- Possible portals to dark sector: Higgs, Neutrino, Vector, (Axion)
- Vector portal: add U(1)' whose massive gauge boson (A' / Z_D / γ_d) mixes kinetically with SM photon _______kinetic mixing parameter

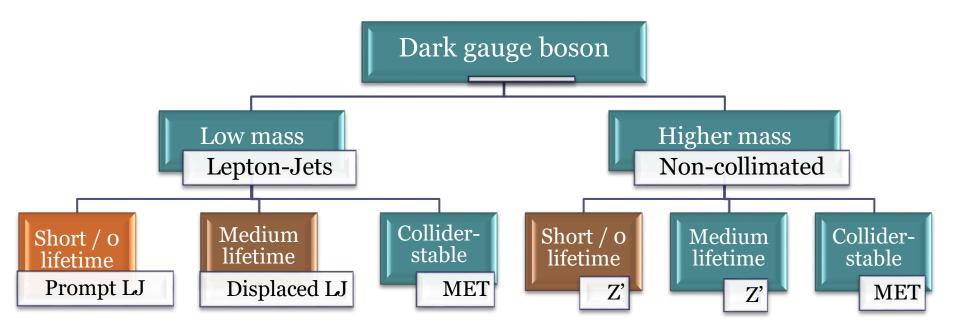
$$\mathcal{L} \supset -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{Z}_{D\mu\nu} \hat{Z}_{D}^{\mu\nu} + \frac{1}{2} \frac{\epsilon}{\cos \theta} \hat{Z}_{D\mu\nu} \hat{B}^{\mu\nu} + \frac{1}{2} m_{D,0}^2 \hat{Z}_{D}^{\mu} \hat{Z}_{D\mu}$$


- Higgs portal: add "dark scalar" (φ / s_d) that mixes with SM Higgs $\mathcal{L} \supset (A\varphi + \lambda \varphi^2) H^{\dagger} H$ Higgs mixing parameter $\longrightarrow \kappa = \frac{Av}{m_h^2 - m_{\varphi}^2}$ • Trilinear term induces mixing after EWSB
- Hidden Abelian Higgs: Higgs Portal + dark gauge boson

• Large unexplored areas of parameter space with low-mass γ_d


Search Motivations

- "Hidden Valley": γ_d our best candidate for collider detection amongst hidden zoo?
 - High γ_d multiplicity in long decay chains?
- Many dark matter models require γ_d to satisfy astrophysical constraints
 - Inelastic Dark Matter
 - Radiating Dark Matter
- γ_d as mediator between dark gauge group and (N)MSSM ?
 - $_{\mbox{\tiny D}}$ Production of superpartners @LHC \rightarrow dark sector $\rightarrow \gamma_d$'s ?



Low-Mass Dark Gauge Boson Decays

- Final-state collimated dilepton signatures: promising but challenging search prospects if γ_d decays back to SM with sizeable BR
- BRs vary with mass
- Lifetime ($c\tau$) varies with mass and ϵ
 - Displaced decays: in domain of planned Long-Lived Particles WG

Low-Mass Dark Gauge Boson Decays

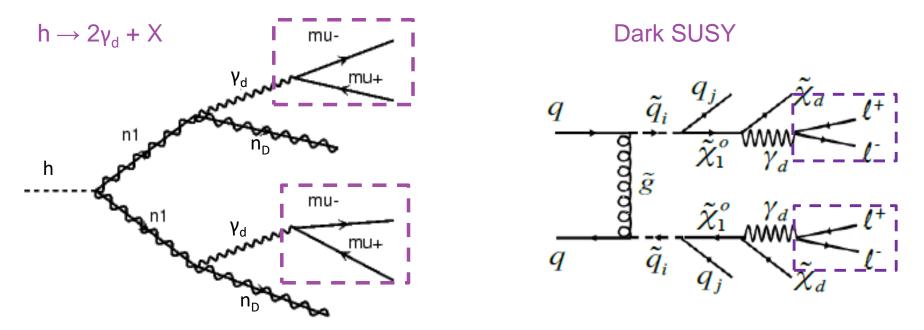
• Prompt LJ search: meets short-lifetime limit of Displaced LJ searches, and low-mass limit of Z' searches

Lepton-Jet Search Challenges

- Low signal rate and no obvious triggers
 - Low lepton-p_T thresholds for sufficient efficiency
 - Need creative triggers to avoid pre-scaling
- Reconstruction challenges for collimated final-state particles
- QCD multijet background

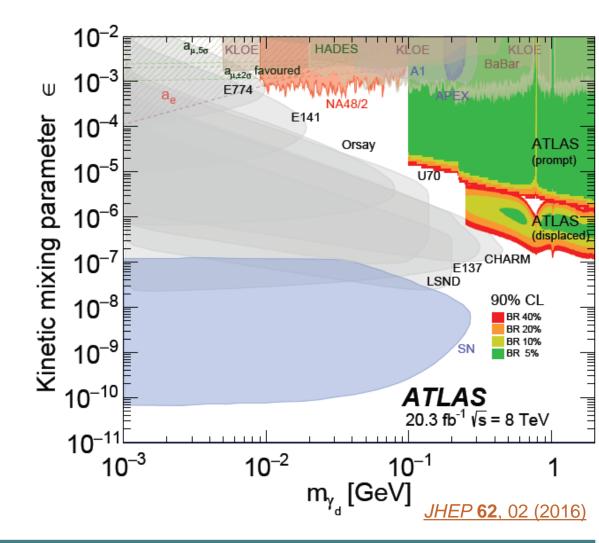
ATLAS Public EXOT-2013-22-Aux

- Range of possible topologies, depending on unknown hidden sector properties
 - Number of constituents per LJ
 - LJ widths

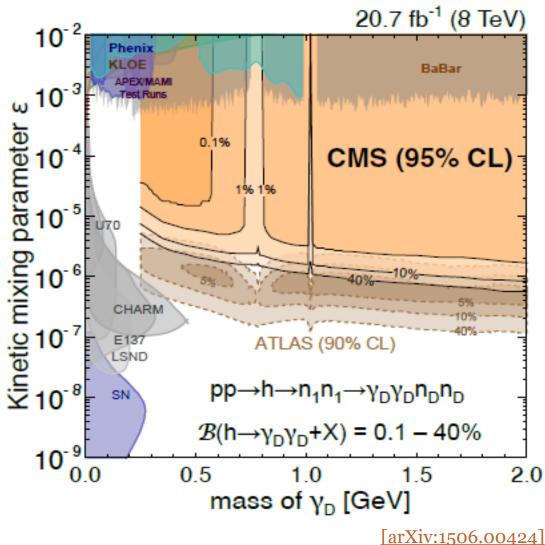

Lepton-Jet Search Strategies

- Key properties:
 - Particle species of decay products (CMS: µ only)
 - Angular aperture of decay products
 - Decay distance (ATLAS: two separate analyses, Prompt and Displaced)
- LJ constituent selection:
 - Clustering algorithm using ΔR cone
 - Vertex fit
 - Invariant mass window
- LJ isolation
 - ^{\circ} Σp_T of tracks within ΔR cone, excluding tracks of LJ constituents
- Require two LJs, consistent with same pp interaction
 - Small $|z_{1LJ} z_{2LJ}|$ (z_{LJ} = projected z at point of closest approach to beamline)
 - Large Δφ between LJs

Lepton-Jet Search Strategies


• For limit-setting, need benchmark models, e.g.

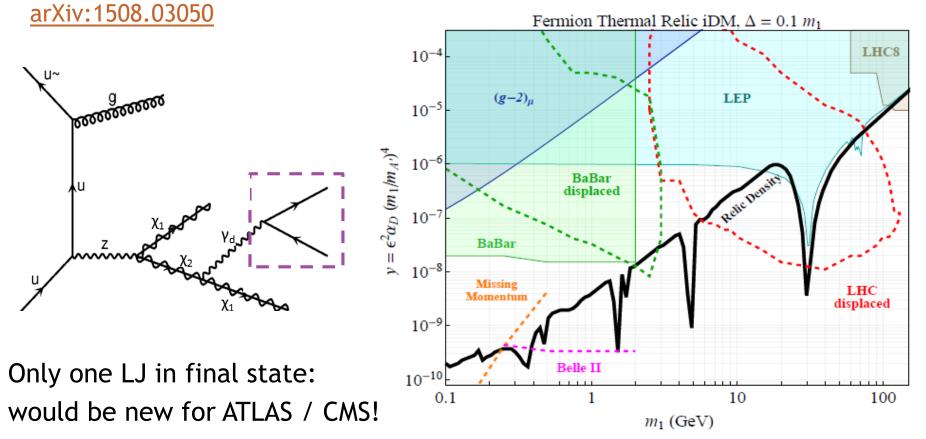
• ATLAS: to allow easy re-casting, tables of trigger and reconstruction efficiency as a function of γ_d {ct , p_T } produced using "Lepton-Jet Gun" MC tool


Run 1 Results: ATLAS

- Prompt search targets decays at primary vertex
- Complementary coverage to ATLAS Displaced LJs search in γ_d parameter space
- In regions other experiments are unable to reach!
 - But, an extra parameter (BR for $h \rightarrow hidden$)

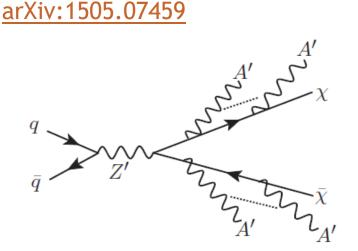
Run 1 Results: CMS

- Targets decays within pixel detector
- Only muon LJs
- Similar coverage to ATLAS Prompt LJs analysis in γ_d parameter space
- In regions other experiments are unable to reach!
 - But, an extra parameter (BR for $h \rightarrow hidden$)

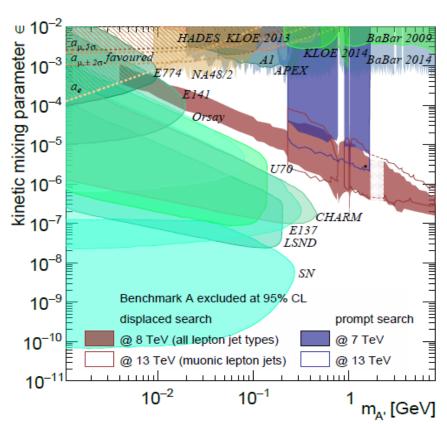


Potential For Run 2

- Repeat Prompt LJ search with 2015-2016 data
 - Expect better limits in [h $\to 2\gamma_d$ + X] benchmark models due to higher Higgs production cross-section
 - A Displaced LJ search with 2015 data has been done: ATLAS-CONF-2016-042
- Extended m_h , m_{γ_d} coverage
- Additional LJ types (ATLAS: converted photons, CMS: electrons)
- ATLAS: Better coverage of short (non-zero) lifetimes via specialized reconstruction of displaced inner detector tracks
- CMS: Improved dimuon vertex reconstruction, in broader fiducial region
- Additional benchmark models ...


Potential For Run 2

- iDM (inelastic dark matter): Dirac fermion DM, mass eigenstates χ_1 and χ_2 with dominantly off-diagonal interactions



Potential For Run 2

 Radiating DM: Phenomenologists used Pythia dark-showering, and recasted ATLAS 7TeV Prompt / 8TeV Displaced LJ results

Collaborate with our pheno friends for better re-casting at 13TeV?

Conclusions

- Low-mass dark gauge bosons appear in a wide range of BSM models
 Vector Portal, Hidden Valley, BSM Higgs, SUSY, ...
- Prompt Lepton-Jets: smoking-gun experimental signature
- Presents experimental challenges ...
 - Non-standard reconstruction, high QCD multijet background, tricky to find triggers
- ... but also big discovery potential!
 - Coverage of large swath of parameter space unexplored by other experiments
- Looking to build on successful 8 TeV Lepton-Jet analyses, at both ATLAS and CMS, for even better 13 TeV versions
 - Expect improved limits on existing benchmark models
 - Potential to explore more models

Backup Slides

17

Lepton-Jet Search Strategies

ATLAS Prompt

JHEP 62, 02 (2016)

Lifetime:

Decays at primary vertex

Particle species:

Muon, electron, mixed

Triggers:

OR of {single-electron, di-EM, singlemuon, di-muon}

Event Selection:

eLJ	emuLJ		
$E_{s1}^{\text{max}} > 0.5 \text{ GeV}$	$E_{s1}^{\text{max}} > 3 \text{ GeV}$		
track isolation < 0.04	track isolation < 0.1		
$f_{\rm HT} > 0.14$	$E_{\rm T}^{\rm had} < 1 {\rm GeV}$		
$f_{\rm EM} > 0.99$	$\hat{f}_{s3} < 0.015$		
$f_{s3} < 0.015$			
muLJ			
track isolation < 0.2 calorimeter isolation <			

CMS

Lifetime:

Decays within pixel detector

Particle species:

Muon only

Triggers:

Di-muon

Event Selection:

4 offline muon candidates (Particle Flow algorithm)

All muons have $p_T\!>\!8GeV\!,\,|\eta|<2.4$

At least one muon with $p_T>17$ GeV, $|\eta|<0.9$

Two oppositely-charged muon pairs, $m(\mu+\mu-) < 5 \text{ GeV}$

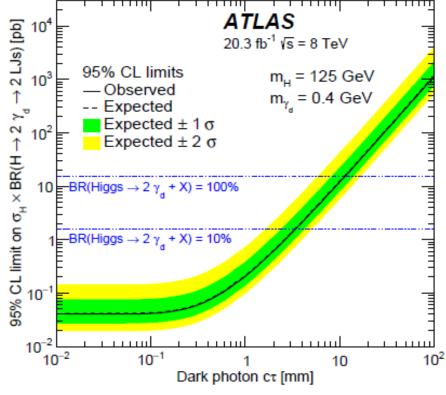
Dimuon vertex: $P_v(\mu+\mu-) > 1\%$ or $\Delta R(\mu+\mu-) < 0.01$

All muons have ≥ 1 hit in pixel layer 1

Dimuon isolation < 2 GeV

 $|z_{1\mu\mu}-z_{2\mu\mu}|<1~mm$

[arXiv:1506.00424]


Run 1 Results: ATLAS

Model-independent observations:

Channel	Background (total)	Observed events in data
eLJ-eLJ	4.4 ± 1.3	6
muLJ-muLJ	4.4 ± 1.1	4
eLJ-muLJ	7.1 ± 1.4	2
eLJ-emuLJ	7.8 ± 2.0	5
muLJ-emuLJ	20.3 ± 4.5	14
emuLJ-emuLJ	1.9 ± 0.9	0

Model-specific limits:

Signal bench- marks	$2\gamma_d + X$					
γ_d mass [GeV]	Obs.	Exp.	-2σ	-1σ	$+1\sigma$	$+2\sigma$
SUSY						
$(m_{\tilde{q}} = 700 \text{ GeV})$						
0.3	5.9	6.5	2.9	4.1	10.9	18.7
0.4	5.9	6.5	2.9	4.1	10.9	18.7
0.5	5.9	6.5	2.9	4.1	10.9	18.7
0.7	6	6.6	2.9	4.1	11	19
0.9	5.9	6.5	2.9	4.1	10.9	18.7
1.2	5.9	6.5	2.9	4.1	10.9	18.7
1.5	5.9	6.5	2.9	4.1	10.9	18.7
2	5.9	6.5	2.9	4.1	10.9	18.7
Higgs						
$(m_H = 125 \text{ GeV})$						
0.4	5.9	6.5	2.9	4.1	11	18.8

JHEP 62, 02 (2016)

Run 1 Results: CMS

Model-independent 95% CL:

$$\sigma(\text{pp} \to 2\text{a} + X) \mathcal{B}^2(\text{a} \to 2\mu) \alpha_{\text{gen}} \le 0.24 + 0.09 \exp\left(-\frac{(m_{\mu\mu} - 0.32)^2}{2 \times 0.03^2}\right)$$

= $\bar{N}(m_{\mu\mu}) / (\mathcal{L}\bar{r})$

 α = kinematic & geometrical acceptance ϵ = selection efficiency

$$r = \epsilon_{data} \, / \, \alpha_{gen}$$

- data gen	•				
m_{γ_D} [GeV]		0.25			
$c\tau_{\gamma_{\rm D}} [{\rm mm}]$	0	0.5	2		
$\epsilon_{ m sim}$ [%]	8.85 ± 0.12	1.76 ± 0.05	0.23 ± 0.03		
α _{gen} [%]	14.32 ± 0.14	2.7 ± 0.06	0.31 ± 0.03		
$\epsilon_{\rm sim}/\alpha_{\rm gen}$	0.62 ± 0.01	0.65 ± 0.02	0.74 ± 0.13		
m_{γ_D} [GeV]		1.0			
$c\tau_{\gamma_{\rm D}}$ [mm]	0	0.5	2		
$\epsilon_{\rm sim}$ [%]	6.13 ± 0.23	4.73 ± 0.07	1.15 ± 0.04		
α _{gen} [%]	8.89 ± 0.28	6.98 ± 0.09	1.68 ± 0.05		
$\epsilon_{\rm sim}/\alpha_{\rm gen}$	0.69 ± 0.03	0.68 ± 0.01	0.68 ± 0.03		
$m_{n_1} = 10 \text{GeV}, m_{n_D} = 1 \text{GeV}$					

[arXiv:1506.00424]