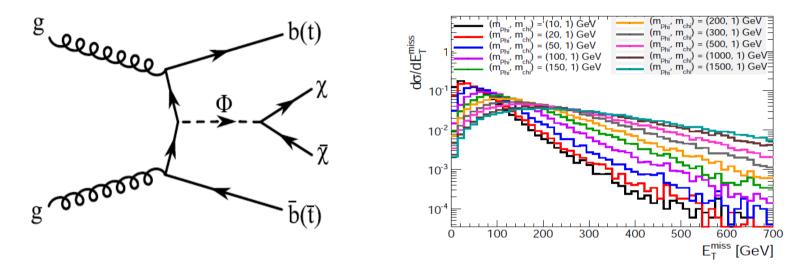


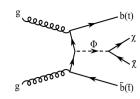
Search for Dark Matter production in association with heavy flavor quark pairs with CMS

Kevin Sung (Northwestern University)

On behalf of the CMS Collaboration


September 20, 2016

Introduction

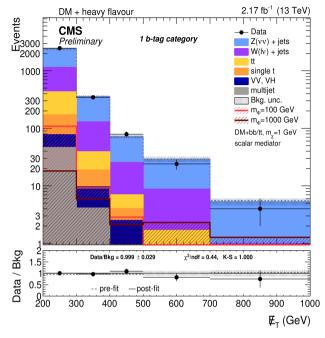

• Under MFV assumption, spin-0 mediators couple to SM via Yukawa couplings, favoring heavy flavor quarks

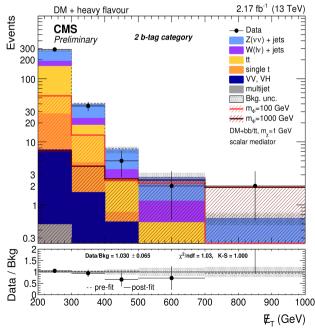
- Search for DM in $b\overline{b}$ +MET and $t\overline{t}$ +MET final states in CMS with 2015 dataset (2.2 fb⁻¹)
 - Physics Analysis Summaries:
 - bb+MET: <u>B2G-15-007</u>
 - tt+MET: <u>EXO-16-005</u>

Signal Generation

- Generated with MadGraph models studied in LHC DMF (link)
 - No mixing with SM Higgs
 - LO ME up to 1 additional parton, Pythia8 showering, MLM matching
- Scalar and Pseudoscalar mediated production with $g_{DM} = g_{SM} = 1$
 - Mediator decays only to Dirac fermion DM pairs
- bb+DM
 - ME computed with 4-flavor scheme
 - Normalize to cross section computed with 5-flavor scheme
- tt+DM
 - MadSpin for spin correlations in top decays
 - Normalized to cross sections from LHC DMF discussions (link)

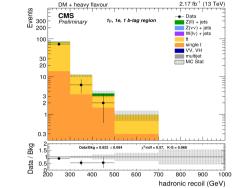
Analysis Strategy

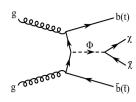

- MET shape analysis
- Control regions defined to help constrain dominant SM backgrounds: tt, W+jets, Z+jets
- Simultaneous fit of signal and control regions
 - Natural way to handle signal "contamination" in control regions
 - Using Higgs Combination framework for limit setting
- bb+MET
 - Signal region split by number of b-tags: single-b, double-b
- tt+MET
 - Semileptonic and hadronic channels
 - Hadronic channel split by number of top tags: 2 top tags, <2 top tags

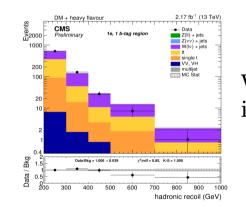


bb+MET Search (1)

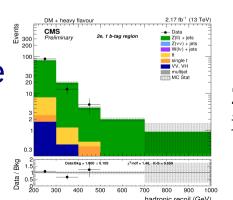
- Selection
 - Two signal regions:
 - (1) One jet (p_T >50) with possibly one additional jet (p_T >30) and exactly <u>1 b-tag</u>
 - (2) Two jets (both p_T >50) with possibly one additional jet (p_T >30) and exactly <u>2 b-tags</u>
 - $\Delta \phi$ (jet, MET) > 0.5 for all selected jets
 - Veto on e, μ, τ, γ
 - MET > 200
- Interpretation with bb+DM signal as well as bb+DM and tt+DM signals together
 - Results driven by sensitivity to tt+DM due to harder MET spectra



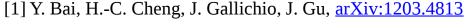

5


bb+MET Search (2)

- 5 background enriched regions corresponding 1 b-tag and 2 b-tag categories (i.e. same N_{iets} and N_b cuts)
 - For tt
 : eµ events
 - For W+jets: e/μ events with $50 < M_T < 160$
 - For Z+jets: $ee/\mu\mu$ events with $70 < M_{\parallel} < 110$
- Leptons are removed from the MET calculation (i.e. hadronic recoil)
- Sources of systematics treated as constrained nuisances on normalization (Gaussian prior) or shape
- 3 additional nuisance parameters scale the corresponding tt
 , W, Z yields in signal region and bkg enriched regions
 - Nuisances have flat prior



tt region in 1-b category



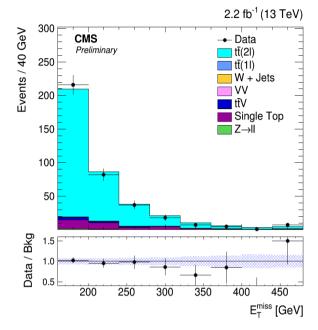
W(e) region in 1-b category

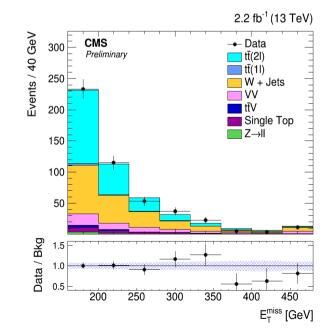
Z(ee) region in 1-b category

September 20, 2016

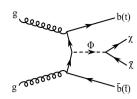
Semilept tt+MET Search (1)

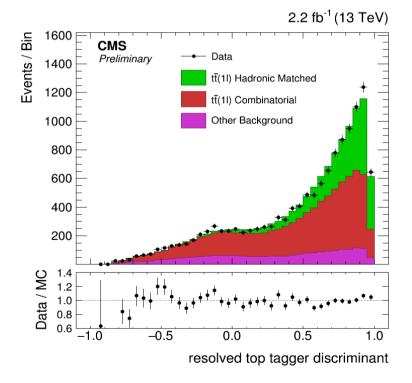
- Selection
 - Single e, μ (p_T>30)
 - 3 or more jets (p_T >30) with at least 1 b-tag
 - M_T > 160
 - Veto on additional e, μ
 - MT2W > 200^[1]
 - Min- $\Delta \phi$ (jet, MET) > 1.2 for two leading jets
 - MET > 160

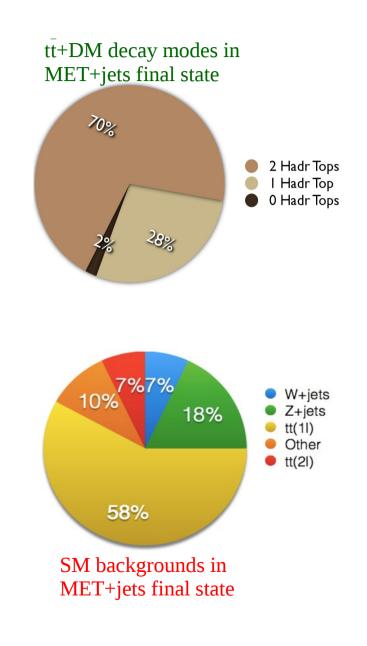




Semileptonic Channel (2)


- Two background enriched regions:
 - For dileptonic tī:
 - Two leptons (ee/eµ/µµ)
 - For W+jets:
 - 3 or more jets but <u>zero b-tag</u>
 - M_T > 160
 - Note there is still significant contribution from dileptonic $\ensuremath{t\bar{t}}$
- Two unconstrained nuisance parameters (one for dilepton tī and one for W+jets) scale the background process across signal and background enriched regions, in addition to the constrained nuisances corresponding to systematics





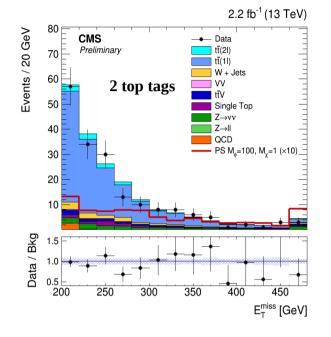
Hadronic tt+MET Search (1)

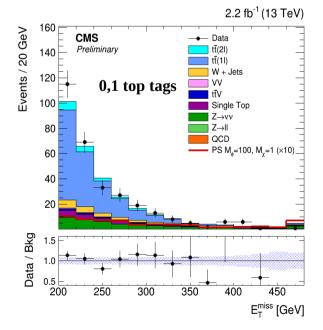
- An MVA discriminant to identify top quark decays to 3 resolved jets is used improve signal purity ^[2]
 - Employs kinematic fit constrained to m_t and m_w
 - Jet properties such as q/g likelihood, angular separation

[2] See talk at 2016 Boost Conference

September 20, 2016

Hadronic tt+MET Search (2)

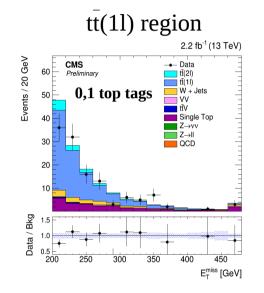


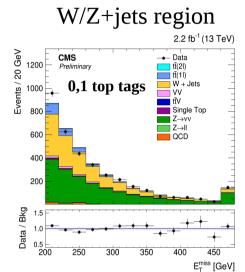

- An MVA discriminant to identify top quark decays to 3 resolved jets is used improve signal purity ^[2]
 - Employs kinematic fit constrained to m_t and m_w
 - Jet properties such as q/g likelihood, angular separation
- Selection
 - Two signal regions:

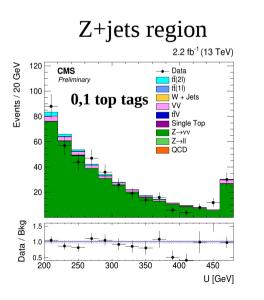
(1) <u>Two top tags</u>, min- $\Delta \phi$ (jet, MET) > 0.4, 1 b-tag

- (2) <u>Less than two top tags</u>, min- $\Delta \phi$ (jet, MET) > 1, 4 or more jets with at least 2 b-tags
- Veto on e, μ
- MET > 200

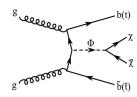
[2] See talk at 2016 Boost Conference

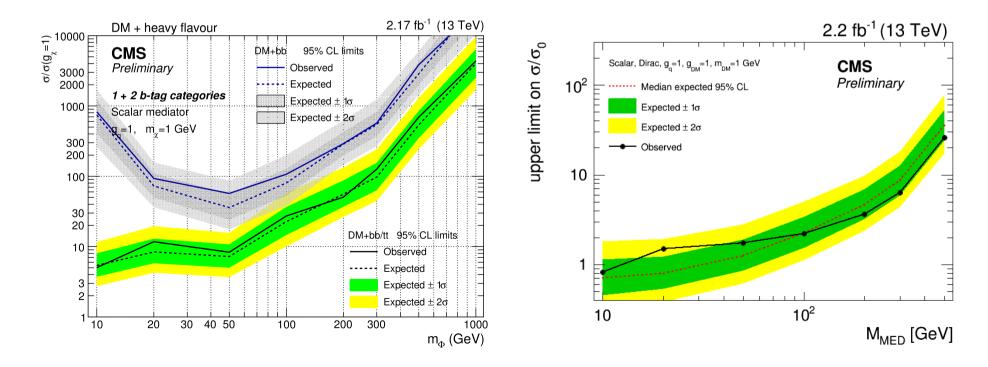





Hadronic Channel (3)

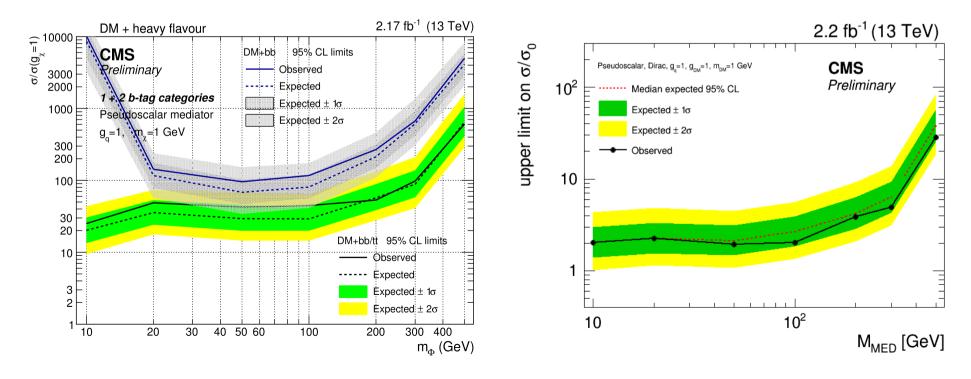
- Background enriched regions respective to both signal categories:
 - For semileptonic tt:
 - e/μ events with $M_T < 160$
 - For W/Z+jets:
 - Events with <u>zero b-tag</u>
 - For W+jets:
 - e/μ events, $M_T < 160$, and <u>zero b-tag</u>
 - For Z+jets:
 - ee/ $\mu\mu$ events with 60 < M_{II} < 120
 - 0,1 top tag category only
- Three unconstrained nuisance parameters (semileptonic tt̄,W+jets, Z+jets)




September 20, 2016

Summary

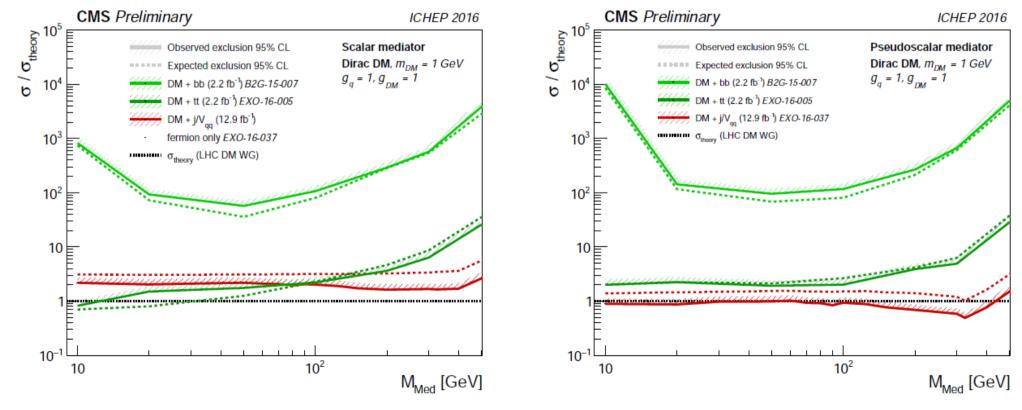
- Dark Matter search in bb+MET and tt+MET final states performed in CMS with 2015 dataset
- Interpretation with $b\overline{b}$ +DM and $t\overline{t}$ +DM signals
 - Results are driven by sensitivity to $t\bar{t}$ +DM


Scalar results

Summary

- Dark Matter search in $b\overline{b}$ +MET and $t\overline{t}$ +MET final states performed in CMS with 2015 dataset
- Interpretation with $b\overline{b}$ +DM and $t\overline{t}$ +DM signals
 - Results are driven by sensitivity to $t\bar{t}$ +DM

Pseudoscalar results


September 20, 2016

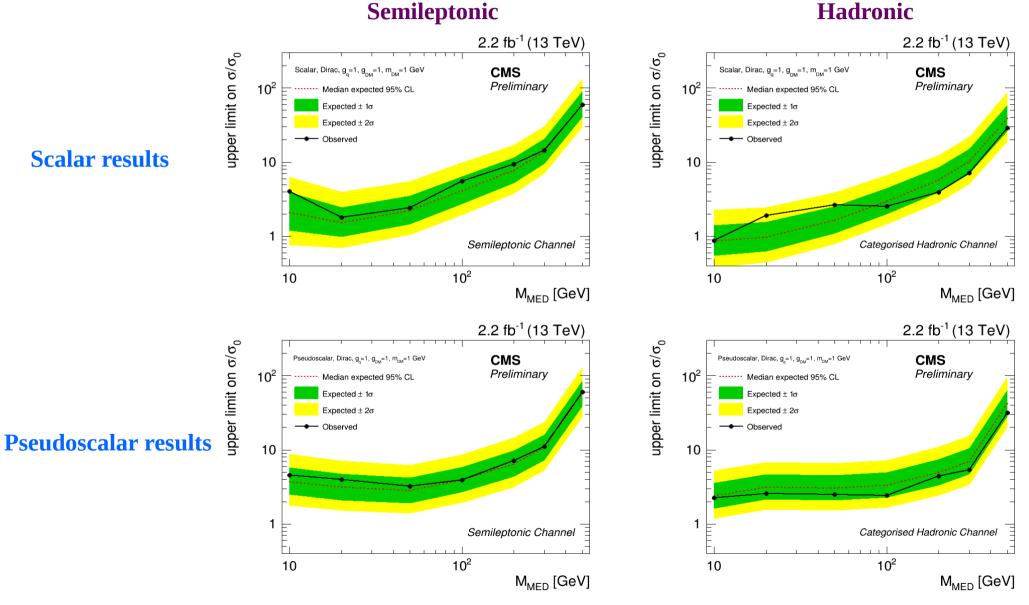
Summary

- Dark Matter search in $b\overline{b}$ +MET and $t\overline{t}$ +MET final states performed in CMS with 2015 dataset
- Interpretation with $b\overline{b}$ +DM and $t\overline{t}$ +DM signals
 - Results are driven by sensitivity to $t\bar{t}$ +DM

From <u>DP-2016/057</u>

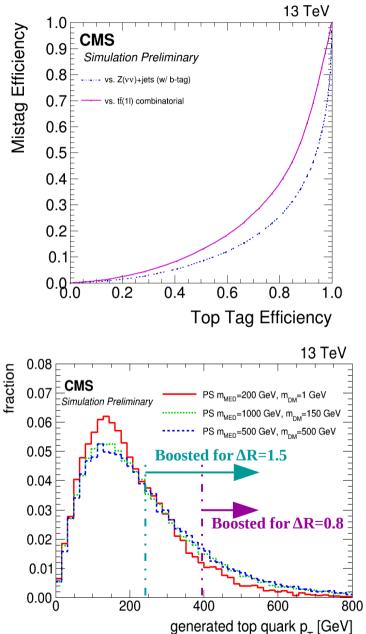
Backup Slides

Signal Region Yields


- Background-only post-fit yields for SM backgrounds
- Uncertainties include statistical and systematics

tt+MET Limits

tt+MET results split by semileptonic and hadronic channels


September 20, 2016

Resolved Top Tagger

- MVA discriminant to identify tri-jet combinations from top quark decays
- Training a BDT with simulated $t\bar{t}$ events
- Input variables:
 - Kinematic fit probability
 - b-tag discriminant
 - Quark/gluon likelihood
 - $\Delta R(j_1,b), \Delta R(j_2,b)$
 - $\Delta \varphi(j_1,b), \Delta \varphi(j_2,b)$
- Efficiencies in MC calibrated with tt events in data
- Tops in $t\bar{t}$ +DM production generally have moderate p_T

