

- How "they" see "us"
- (Very) light mediator caveats
- Proposal for an improved way of presenting collider limits

^{*)}Based on a number of interactions with DD community members, and with thanks to Michele Papucci and Kathryn Zurek for useful discussions

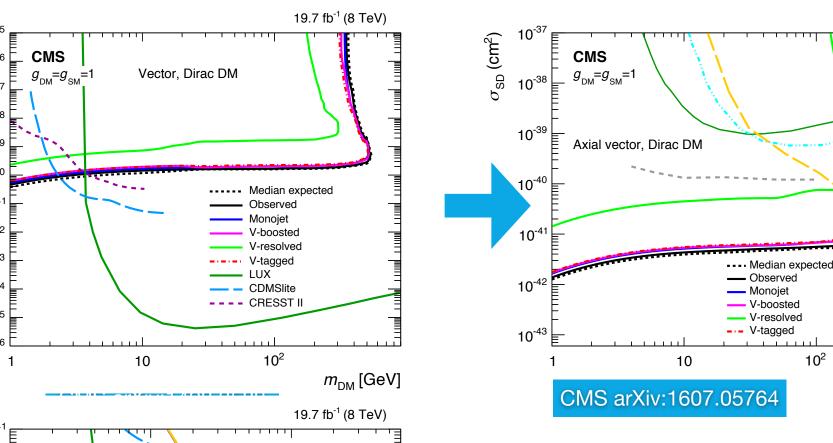
Mediators - DM WG

The Limit Evolution

19.7 fb⁻¹ (8 TeV)

PICO-60

PICO-2L


= Super-K τ⁺τ⁻

10²

IceCube τ⁺τ⁻

 $m_{\rm DM}$ [GeV]

- Switch from dominant EFT interpretation to SMDM interpretation in the past two years
 - More accurate comparison between the collider and DD limits
 - Emphasis on complementarity

The Message Evolution

- What was the message implicitly given to the DD community?
 EFT Era:
 - DD folks are wasting their time with SD experiments colliders already do much better and will do even better in the future up to ~1 TeV DM mass
 - Arrogant and actually incorrect
- Post-EFT Era:
 - Colliders win (in both SD and SI searches) at low DM masses (<5-10 GeV), while at larger DM masses there is nice complementarity between the DD and colliders
 - Moderate and somewhat correct
 - Is this a fully correct message the DD community reads off our plot?
 - Not quite!
 - Caveat: the case of (very) light mediator

Comparing the Sensitivity

+ DD:

$$\sigma(\chi N \to \chi N) \sim \frac{g_q^2 g_\chi^2}{M^4} \mu_{\chi N}^2$$

- Sensitivity increases dramatically as the mediator (M) gets lighter due to the kinematics of t-channel exchange
- This is a <u>big deal</u> given strong limits on SUSY-like WIMPs exploring light DM and light mediators is becoming more and more important
 - New ideas in DD community are being developed, e.g. semiconductor detectors exploring electron recoil to be sensitive to light (sub-GeV) DM

Colliders:

$$\sigma_{1j} \sim \begin{cases} \alpha_s \, g_{\chi}^2 \, g_q^2 \, \frac{1}{p_T^2} & M \lesssim p_T \,, \\ \\ \alpha_s \, g_{\chi}^2 \, g_q^2 \, \frac{p_T^2}{M^4} & M \gtrsim p_T \,, \end{cases}$$

- For light mediator (M << ME_T), cross section doesn't depend on the mediator mass
- Iclearly, at some point the DD wins over colliders why don't we see this in the plots?

The Plot Anatomy

SI case: $\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \ {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \ {\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ {\rm GeV}}\right)^2$ **CMS** *Preliminary* 12.9 fb⁻¹ (13 TeV) **CMS** Preliminary 12. 10⁻³⁴ 10⁻³⁴ Vector med, Dirac DM, $g_{g} = 0.25, g_{SM} = 1$ Axial vector med, Dirac DM, $g_{n} = 0.25$ Median Expected (13 TeV) 90% CL Median Expected (13 TeV) 90% 10^{-35} 10⁻³⁵ Observed (13 TeV) 90% CL Observed (13 TeV) 90% CL 10⁻³⁶ LUX PICO-60 **CDMSLite** PICO-2L **Λαεζιαί** τ⁺τ⁻ 10⁻³⁷ PandaX-II **CRESST-II** Super-K τ⁺τ⁻ GeV 10⁻³⁸ M ~ 100 GeV [√]^{10⁻³⁸} σ_{SI} [cm²] 10⁻³⁹ • ve go lower? 10⁻⁴⁰ ເສັ 10⁻⁴⁰ 10^{-41} **10**⁻⁴¹ 10⁻⁴² Increasing mediator mass 10⁻⁴² 10^{-43} 10^{-43} 10^{-44} 10^{-45} 10^{-44} 10^{-46} 10^{-45} 10² 10 $m_{DM} [Ge^{10}]$ 10 10 CMS PAS EXO-16-037

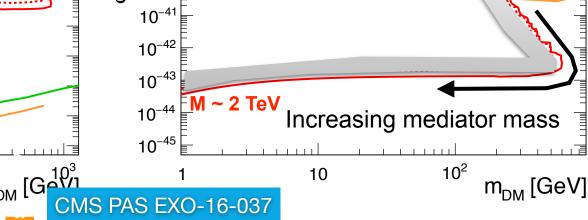
The Plot Anatomy

SI case: $\sigma_{\rm SI} \simeq 6.9 \times 10^{-41} \ {\rm cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \ {\rm TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \ {\rm GeV}}\right)^2$ **CMS** *Preliminary* 12.9 fb⁻¹ (13 TeV) **CMS** Preliminary 12. 10⁻³⁴ 10⁻³⁴ Vector med, Dirac DM, $g_{g} = 0.25, g_{SM} = 1$ Axial vector med, Dirac DM, $g_{n} = 0.25$ Median Expected (13 TeV) 90% CL Median Expected (13 TeV) 90% 10⁻³⁵ 10^{-35} Observed (13 TeV) 90% CL ∖M ~ 10 GeV Observed (13 TeV) 90% CL 10^{-36} LUX PICO-60 **CDMSLite** PICO-2L **Λαεζιαί** τ⁺τ⁻ 10⁻³⁷ PandaX-II **CRESST-II** Super-K τ⁺τ⁻ GeV 10⁻³⁸ M~100 GeV ر ¹⁰⁻³⁸ $\begin{bmatrix} 10^{-39} \\ 10^{-40} \end{bmatrix} = \begin{bmatrix} 10^{-40} \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 10^{-41} \end{bmatrix}$ ve go lower? 10⁻⁴⁰ ເສັ 10⁻⁴⁰ 10^{-41} **10**⁻⁴¹ 10⁻⁴² Increasing mediator mass 10⁻⁴² 10^{-43} 10^{-43} 10^{-44} 10^{-45} 10^{-44} 10^{-46} 10^{-45} 10² 10 $m_{DM} [Ge^{10}]$ 10 CMS PAS EXO-16-037

10

SD case:

ators - DM WG


TeV)

The Plot Anatomy

12.9 fb⁻¹ (13 TeV)

M ~ 10 GeV

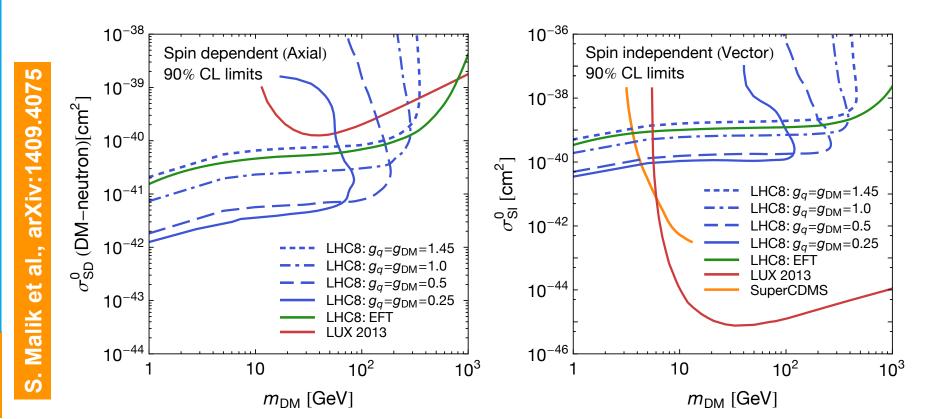
 $\sigma^{\rm SD} \simeq 2.4 \times 10^{-42} \text{ cm}^2 \cdot \left(\frac{g_q g_{\rm DM}}{0.25}\right)^2 \left(\frac{1 \text{ TeV}}{M_{\rm med}}\right)^4 \left(\frac{\mu_{n\chi}}{1 \text{ GeV}}\right)^2$ **CMS** *Preliminary* 10⁻³⁴ Axial vector med, Dirac DM, $g_q = 0.25$, $g_{SM} = 1$ Median Expected (13 TeV) 90% CL 10⁻³⁵ Observed (13 TeV) 90% CL PICO-60 10⁻³⁶ PICO-2L IceCube $\tau^+\tau^ 10^{-37}$ Super-K T⁺T 10⁻³⁸ $\begin{bmatrix} 10^{-3i} \\ 0 \end{bmatrix} \begin{bmatrix} 10^{-3i} \\ 10^{-39} \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ 100 GeV 10⁻³⁹ **10**⁻⁴¹

Where to Stop?

- There are a number of problems in lowering the mediator mass in the SMDM approach:
 - Moving in the fairly low-x regime at the LHC
 - * M ~ 10 GeV => x ~ 10^{-2} for on-shell production
 - PDF and scale uncertainties become large, even if regulated by the minimum ISR p_T requirement
 - For the vector mediator case need to account for the interference/mixing with Z boson and DY

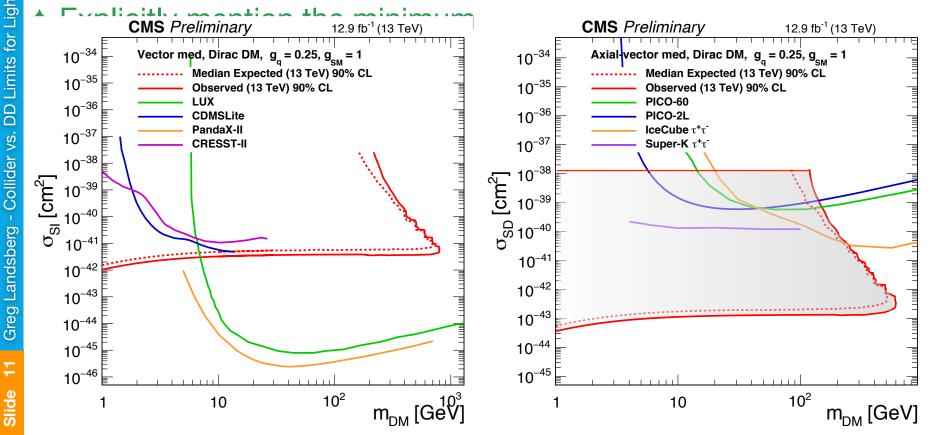
The cross section for the latter becomes large <10 GeV</p>

- Need to account for various low-mass quarkonia resonances at least for the vector case below 10 GeV
- Unitarity violation (see arXiv:1603.04156, Section 3.3.2)
 DM Yukawa coupling becomes non-perturbative for m < M√π/2 (for g_{DM} =1, see arXiv:1503.05916, 1510.02110)


Other Considerations

- Going below M ~ 100 GeV requires proper accounting of other constraints in the SMDM framework:
 - Limits from Z boson decays with missing energy (should apply to vector, axial vector, and scalar mediators)
 - Limits from B-physics and other rare decays for mediator masses below ~10 GeV
- Perhaps, with some work and careful literature review one could go as low as ~10 GeV
 - Not clear we really benefit from this, as limitations of simplified models for such light mediator become quite severe and the results are not trustworthy without a complete model
- However, 100 GeV (110 GeV is currently used in CMS plots for EXO-16-037) appears to be a solid number at least for (axial)vector case, where limitations are minor
- For (pseudo)scalars exploring lighter M may be prudent (but then the contours for scalars are already closed, and for pseudoscalars DD limits vanish)

Other Choice of Couplings


Note that the turnover of the curve for light mediators becomes even more dramatic as the couplings decrease

Proposal

- Truncate all the collider curves on DD plots at M = 100 GeV
- Show this explicitly as a straight horizontal line, indicating that collider limits only apply to a closed area and further emphasizing an importance of DD experiments to cover the light mediator case

