Invisible Decays in Higgs Pair Production

Shankha Banerjee LAPTh, Annecy-le-Vieux

September 20, 2016

arXiv: 1608.08601

(with B. Batell and M. Spannowsky)

(日) (同) (三) (三)

Plan of my talk

- Motivation
- Higgs invisible decays
- $b\bar{b} + \not\!\!\!E_T$ final state
- SM production
- Results
- Other exotic Higgs decays
- Summary and Conclusions

<ロ> (日) (日) (日) (日) (日)

Motivation

- Di-Higgs provides means to directly probe Higgs cubic coupling
- LHC or 100 TeV colliders : self-coupling at 10-50% precision measurement possible → size of dataset, beam energy, control over systematics
- Enhancement of $\sigma_{hh} \rightarrow s$ -channel resonance [xSM models *etc.*], new coloured particles in loops or HD operators [Mühlleitner *et. al.*, 2015; Ramsey-Musolf *et. al.*, 2016 *etc.*] \rightarrow kinematics altered \rightarrow requires different experimental search strategies

イロト 不得下 イヨト イヨト 二日

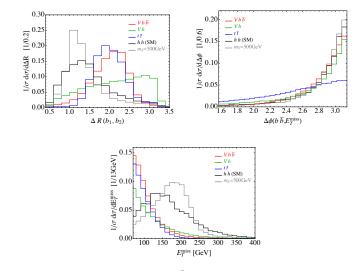
Motivation

- Till date \rightarrow major focus on BSM di-Higgs sector \rightarrow enhancement in production
- New physics can affect Higgs decays → exotic Higgs decays now actively studied [Curtin et. al., 2015]
- $\sigma_{pp \to h} \gg \sigma_{pp \to hh} \to$ expect exotic Higgs decays to show up in single Higgs channels first unless di-Higgs is enhanced considerably
- Worthwhile to consider exotic decays for di-Higgs → present bounds on variety of Higgs decays : BR very weak (10-50%)

Invisible Higgs decays

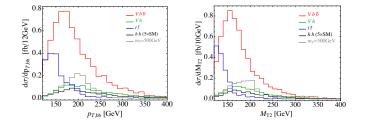
- Here we will discuss the scenario where one Higgs decays invisibly $(h \to \not\!\!\! E_T)$
- Motivations → DM connection, decay to long-lived sterile neutrinos, PNGBs like axions or Majorons, LSP in SUSY, KK-states in extra-dimensional theories
- BR_{inv} constrained from global fits of Higgs data or from direct searches like mono-jet (*hj*), VBF (*hjj*) and Vh channels $\rightarrow Br_{inv} \lesssim 25 50\% \rightarrow$ potential to bound $Br_{inv} \lesssim 5\%$ at HL-LHC

イロト 不得下 イヨト イヨト 二日


- We focus on the $b\bar{b} + \not{\!\!\! E}_T$ channel and explore HL-LHC prospects for SM and resonance augmented production
- Important to study such channels \rightarrow realisation of invisible Higgs decays must be confirmed from di-Higgs production and if BR_{inv} sizable \rightarrow channel needs to be studied to probe scalar potential
- $\sigma_{\rm NNLO}^{hh} = 37.52_{-7.6\%}^{+5.2\%}$ fb @ 14 TeV [Florian *et. al.*, 2016]
- Several other interesting channels like 2γ + ∉_T, 4ℓ + ∉_T → tiny cross-section due to small BR, important for resonance scenario
- WW* + ∉_T has larger BR but fully leptonic will give additional ∉_T (reconstruction of both Higgs extremely challenging) and fully hadronic will have large SM backgrounds. Similarly for ττ + ∉_T

- \bullet Combining with the aforementioned channels might yield a larger sensitivity \rightarrow future work
- Proposed signature similar to mono-Higgs, studied as a probe of certain DM scenarios [See Shin-Shan Eiko Yu's talk] → little overlap, cuts for mono-Higgs searches not optimised for di-Higgs especially the hard ∉_T cut [Carpenter *et. al.*, 2013 *etc.*]
- Events generated with MadGraph5 aMC@NLO, showered through Pythia 6/8, detector analysis with Delphes 3, cross-checked with Herwig 7
- Higgs BRs are now scaled by $(1 Br_{inv}) \rightarrow$ rates diluted by $(1 Br_{inv})^2$

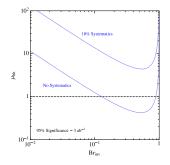
イロン イロン イヨン イヨン 三日


- Fake backgrounds : $b\bar{b}$ (completely removed by large $\not \in_T$ cut), Vjj, Vjb(V = W, Z) ($j \rightarrow b$ fake rate $\mathcal{O}(10^{-2}) \rightarrow$ subdominant to Vbb)
- Dominant backgrounds : Wbb, Zbb, tt, Wh, Zh. Subdominant background : single top
- MET trigger of 90 GeV used [CMS-PAS-EXO-16-012]
- Selection cuts : 2 *b*-jets with $p_T > 55$ (35) GeV, at most one additional jet with $p_T > 35$ GeV, 0 leptons with $p_T > 10$ GeV and $|\eta| < 2.5$, 115 GeV $< m_{bb} < 135$ GeV, $0.4 < \Delta R(b_1, b_2) < 2.0$, $\Delta \phi(bb, \not\!\!\!E_T) > 2.5$, $\not\!\!\!E_T > 160$ GeV, $p_{T,bb} > 180$ GeV and $M_{T2} > 160$ GeV

イロト 不得下 イヨト イヨト 二日

Figure : Kinematic distributions for the variables $\Delta R(b_1, b_2)$, $\Delta \phi(b\bar{b}, E_T)$, and E_T after the first selection of two *b*-jets. Here we have fixed $Br_{inv} = 0.2$.

Shankha Banerjee (LHC DM WG meeting, September Invisible Decays in Higgs Pair Production



æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

SM production

Figure : Reach of the $b\bar{b} + b'_T$ search to di-Higgs production at LHC $\sqrt{s} = 14$ TeV with 3 ab⁻¹ integrated luminosity. Here we display the 95% significance in the Br_{inv} - μ_{hh} plane for two assumptions on background systematics: 1) statistics dominated, $\gamma_B = \gamma_S = 0$, and 2) 10% systematic uncertainty on both signal and background, $\gamma_B = \gamma_S = 0.1$.

<ロ> (日) (日) (日) (日) (日)

Results

- For SM production : Cut based analysis $\rightarrow S/B = 0.026$, $S/\sqrt{B} = 2.82$
- BDT with 13 kinematic variables, viz. $M_{b_1b_2}$, $\Delta R(b_1, b_2)$, $p_T^{b_1}$, $p_T^{b_2}$, η^{b_1} , η^{b_2} , ϕ^{b_1} , ϕ^{b_2} , $\Delta \phi(\not{\!\! E}_T, b_1b_2)$, $p_T^{b_1b_2}$, $M_{T,2}$, M_T , $\not{\!\! E}_T$
- MVA does not improve results significantly \rightarrow S/B = 0.033, $S\sqrt{B} = 4.44$
- If systematic uncertainties are controlled using data-driven techniques, then only the SM production mode can be tackled
- We choose a heavy resonance with mass m₅ ≫ 2m_h → highly boosted Higgs
 → highly boosted bottom jets and large ∉_T → easier separation from backgrounds

Results

- Model-independent constraints for di-Higgs resonances (from $4b, 2b2\gamma, 2b2\tau$ etc. searches) \rightarrow scaling 8 TeV results using gluon luminosities at 14 TeV yield $\sigma(pp \rightarrow S \rightarrow hh)_{14 \text{ TeV}}$ between 25 pb - 200 fb for masses 200 GeV - 1 TeV
- Recent results at 13 TeV, 13.3 fb⁻¹ in *hh* → 4*b* channel constrains the cross-section from 1 pb 50 fb at 14 TeV in the same mass range [ATLAS 1606.04782]
- For $m_S = 500$ GeV, $\sigma_{hh} < 450$ fb \rightarrow these assume SM BRs and hence for us results will be larger by $(1 BR_{inv})^{-2}$
- Benchmark chosen : $m_S = 500$ GeV, $\sigma(pp \rightarrow S \rightarrow hh)_{14 \text{ TeV}} = 5\sigma_{SM}^{hh}$, $\Gamma_S/m_S = 0.01$
- $p_{T,bb} > 200 \text{ GeV}$ and $M_{T2} > 200 \text{ GeV}$
- Cut based analysis : $S/B = 0.13, S/\sqrt{B} = 12$ and MVA :

S/B = 0.22 $S/\sqrt{B} = 24$ for Br:... = 0.1Shankha Banerjee (LHC DM WG meeting, September) Invisible Decays in Higgs Pair Production イロン イヨン イヨン イヨン 三日

Other exotic Higgs decays

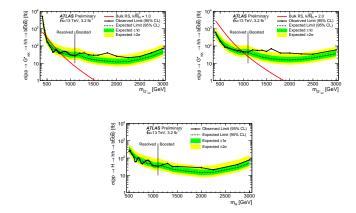
- $\gamma\gamma + \not\!\!\! E_T$: good potential for a resonance scenario
- Following [Curtin et. al.] some interesting exotic decay modes like
 h → XX → 4b : potential final state 4b + 2ℓ + ∉_T with the other Higgs decaying leptonically (WW*, ZZ*, ττ)
- Decays like $h \to aa \to 2b2\tau$ and the other Higgs decaying to $b\bar{b}$: interesting $4b2\tau$ final state
- Decays like h → aa → 4j : both jet pairs reconstructable. The other Higgs may decay to bb or leptonically
- Another potential channel : $h
 ightarrow aa
 ightarrow 2\gamma 2j$ and a final signature of $2b2\gamma 2j$
- There are other interesting exotic decay modes which might face strong backgrounds from single Higgs production but may have very less background in di-Higgs
- We leave these for a comprehensive future work

・ロト ・ 同 ト ・ 国 ト ・ 国 ト 三 国

Summary and Conclusions

- Search for Higgs pair production is an important enterprise to understand the Higgs cubic coupling
- New search strategy proposed $pp \to hh \to b\bar{b} + \not\!\!\! E_T$ with a non-SM decay mode
- Persistent backgrounds like $Zb\bar{b}$ make it a challenging task to see di-Higgs with an SM production mode
- On introducing a resonance, the prospects of observing this channel improve significantly
- Systematic uncertainties need to be understood better in the future in order to make strong claims about these channels

イロン イロン イヨン イヨン 三日


Backup

	, ,	Wbb (no h)	Zbb (no h)	Wh	Zh (1)	Zh (2)	tī
	Signal	(2 <i>b</i> ℓ <i>ν</i>)	$(2b2\nu/2b2\ell)$	(2 <i>b</i> ℓ <i>ν</i>)	$((2\nu/2\ell)(2b))$	((2b)(∉ _T))	(lep+semi-lep)
∉ _T trigger	0.135	2.81×10^{-2}	5.63×10^{-2}	1.72×10^{-2}	5.21×10^{-2}	8.60×10^{-2}	7.92×10^{-3}
+ 2b+0,1j		1 '	1 '	1 '	1	1	1
p _T (b)	0.131	2.64×10^{-2}	5.12×10^{-2}	1.65×10^{-2}	4.99×10^{-2}	8.10×10^{-2}	7.37×10^{-3}
m _{bb}	0.0484	7.54×10^{-3}	1.50×10^{-2}	7.16×10^{-3}	2.01×10^{-2}	1.73×10^{-3}	2.31×10^{-3}
$\Delta R(b_1, b_2)$	0.0438	5.29×10^{-3}	9.95×10^{-3}	5.97×10^{-3}	1.67×10^{-2}	1.32×10^{-3}	1.41×10^{-3}
$\Delta \phi(bb, E_T)$	0.0382	5.14×10^{-3}	9.56×10^{-3}	5.78×10^{-3}	1.58×10^{-2}	1.24×10^{-3}	1.07×10^{-3}
₽́T	0.0235	9.79×10^{-4}	2.29×10^{-3}	1.62×10^{-3}	7.18×10^{-3}	6.51×10^{-4}	9.50×10^{-5}
p _T (bb), M _{T2}	0.0144	4.87×10^{-4}	8.82×10^{-4}	1.21×10^{-3}	4.54×10^{-3}	3.95×10^{-4}	5.73×10^{-6}
Scaling	μ _{hh} Br _{inv}	1	1	(1-Br _{inv})	(1-Br _{inv})	Brinv	1
	(1-Br _{inv})		'		1		1

Table : Cut-flow table for the $b\bar{b} + \not\!\!\!/_{T}$ search. Listed in each cell are the efficiencies after the associated cut. The final row displays the scaling of each channel with Br_{inv} .

イロン イヨン イヨン イヨン

Backup

Figure: The combined expected and observed upper limit for $pp \rightarrow G_{KK}^* \rightarrow hh \rightarrow bbbb$ in the bulk RS model with (a) k/MPI = 1 and (b) k/MPI = 2, as well as (c) $pp \rightarrow H \rightarrow hh \rightarrow bbbb$ with fixed H = 1 GeV, at the 95% confidence level. The results of the resolved analysis are used up to a mass of 1100 GeV and those of the boosted analysis are used at higher mass where its expected sensitivity is higher. The red curves show the predicted cross sections as a function of resonance mass for the models considered. Limits are computed within the asymptotic approximation.

3

・ロン ・四 と ・ ヨ と ・ ヨ と

Backup

- Mühlleitner *et. al.* mentions in their whitepaper that using an \times SM model, one can get a di-Higgs enhancement of \sim 920 fb with a heavy Higgs mass of 279.65 GeV
- Similar benchmarks from Ramsey-Musolf *et. al.*, 2016 but for a 100 TeV collider

イロン イヨン イヨン イヨン