NUCLEU IN COSMIC RAYS: WHY SHOULD WE CARE ABOUT ISOTOPIC PRODUCTION CROSS SECTIONS?

 $S_{-}02$

IGOR V MOSKALENKO – STANFORD

Timeline of γ-ray, CR, and particle experiments

CRs in the interstellar medium

Modeling is a must!

PAMELA discovery: Rising positron fraction

- ♦ TS93 (Golden+'96): flat
 positron fraction 0.078±0.016
 in the range 5-60 GeV
- ♦ HEAT-94,95,00 (Beatty+'04):
 "a small positron flux of nonstandard origin"
- PAMELA team reported a clear and very significant rise in the positron fraction compared to the "standard" model predictions
- ♦ "Standard" model:
 - ✦ Secondary production in the ISM
 - ✦ Steady state
 - Smooth CR source distribution

AMS-02: measurement of the positron fraction

Interpretations

♦ Dark matter annihilation/decay (>1300 papers)

Astrophysical origin (~200 papers): \diamond SNR shocks: + Galactic SNRs ✦ Local SNR(s) \diamond Inhomogeneity of CR sources (SNRs) ♦ "Model-independent estimates" Photoproduction \diamond Radioactive decay \diamond

ISM

Production of secondaries at the shock

 In the "standard" scenario, secondary species are produced in the interstellar medium – softer spectrum at all energies

◇ In the SNR scenario, some proportion of secondary species is produced in the shock and then accelerated together with primary species – harder spectrum at <u>high</u> energies

Secondary production in a SNR shock

- ♦ The model assumptions are somewhat different, but all models predict a rise in the secondary products
- The rise in pbar/p and B/C ratios become more subtle as the higher energy data become available

AMS-02: B/C ratio

 ♦ Contrary to expectations, the B/C ratio is monotonically falling up to 2 TV

- ♦ The "structure" is not significant
- ♦ The dashed red line is a fit that yields an index
 0.3333 (classical Kolmogorov index is 1/3)

PAMELA: definitive evidence of the breaks

AMS-02 study of the break structure

Possible interpretations

- ♦ The p/He ratio is correctly reproduced in all scenarios except the Reference scenario:
 - ♦ Propagation (P)
 - \diamond Injection (I)
 - ♦ Local source at Low Energies (L) or at High Energies (H)
- ♦ Different composition vs. Energy
- Measured pbar/p ratio is in a better agreement with propagation scenario (P)
- Only propagation scenario (P) is in an agreement with anisotropy data

GALPROP: Vladimirov+'2012, ApJ 752, 68

XSCRC2017 • March 29-31, 2017 :: IVM 13

B/C ratio

- Two models:
 reacceleration and plain
 diffusion
- ♦ Scenario (P) predicts a break in the B/C ration at ~150 GeV/n (~300 GV)
- The plots are using PAMELA data; AMS-02 point to less sharp break

GALPROP: Vladimirov+'2012, ApJ 752, 68

More on breaks

- ♦ The breaks are at the same rigidity – indicates that the same (unknown) mechanism works for p, He, and heavier elements
- ♦ What's about electrons and/or positrons?
- The breaks are rather opposite – spectral steepening (I am not saying that they are significant)

 \diamond Why?

Direct probes of CR propagation

Direct measurements probe a very small volume of the Galaxy

Light & heavy nuclei probe different propagation volume

The propagation distances are shown for nuclei for rigidity ~1 GV, and for electrons ~1 TeV

♦ Index of the diffusion coefficient δ ~0.33

Effective propagation distance: $\langle X \rangle \sim \sqrt{6}D\tau \sim 2.7 \text{ kpc } \mathbb{R}^{\delta/2} (A/12)^{-1/3}$ Helium: ~ 3.6 kpc $\mathbb{R}^{\delta/2}$ Carbon: ~ 2.7 kpc $\mathbb{R}^{\delta/2}$ Iron: ~ 1.6 kpc $\mathbb{R}^{\delta/2}$ Lead: ~ 1.0 kpc $\mathbb{R}^{\delta/2}$ (anti-) protons:~ 5.6 kpc $\mathbb{R}^{\delta/2}$ Electrons ~ 1 kpc $\mathbb{E}_{12}^{-\delta/2}$ γ -rays: detailed information about *p*,*e* spectra in the whole Galaxy ~50 kpc

- Do we know pbar production cross section to <5% accuracy?</p>
- > Propagation/injection errors?
- ♦ Real DM signal?

Must measure the cross sections to say for sure

Fermi-LAT: Inner Galaxy

- ♦ Cylindrically symmetrical model
- Gas distribution, its emissivity, and γ-ray emission from inverse Compton scattering are divided into 6 Galactocentric rings. Their relative normalization is determined from a fit to the Fermi-LAT data
- Point sources, isotropic emission and Loop I are tuned to the data in iterations
- Fitting starts from the outer Galaxy and the normalizations of the rings are consequently fixed
- Extracting emission from the central part of the Galaxy

Annulus	R_{\min}	R _{max} (kpc)	Longitude	Longitude	
#	(kpc)		Range (Full)	Range (Tangent)	
1	0	1.5	$-10^{\circ} \leqslant l \leqslant 10^{\circ}$		
2	1.5	2.5	$-17^{\circ} \leqslant l \leqslant 17^{\circ}$	$10^\circ \leq l \leq 17^\circ$	
3	2.5	3.5	$-24^{\circ} \leq l \leq 24^{\circ}$	$17^{\circ} \leq l \leq 24^{\circ}$	
4	3.5	8.0	$-70^{\circ} \leqslant l \leqslant 70^{\circ}$	$24^{\circ} \leq l \leq 70^{\circ}$	
5	8.0	10.0	$-180 \leqslant l \leqslant 180^{\circ}$		
6	10.0	50.0	$-180 \leq l \leq 180^{\circ}$		

Table 1 Calactocentric Appular Pour derive

Fermi-LAT: Ajello+'2016

XSCRC2017 • March 29-31, 2017 :: IVM 18

Results of the fit with the NFW profile

(Data-model): sources - pulsar distribution, point sources removed

XSCRC2017 • March 29-31, 2017 :: IVM 19

Events per pixel $0.1^{\circ} \times 0.1$

Sources of cosmic rays

- ♦ Some isotopes in CRs have anomalous abundances
- Ne²²/Ne²⁰ excess indicates that about ~20% of CRs are accelerated dense winds of massive stars (e.g. Wolf-Rayet)
- ♦ ACE data: ≤500 MeV/n

ACE: Primary 60Fe in cosmic rays

 $\Rightarrow \beta^-$ decay with a half-life of 2.62 Myr

♦ Supports a hypothesis of a "recent" SN explosion in the Solar system neighborhood

CR source isotopic abundances

GALPROP-based derivation of source isotopic abundances using ACE data at ~200 MeV/n

 56 Fe-> 53 Mn (~80%)

 56 Fe-> 41 Ca (~50%)

Global impact of low energy data & nuclear cross sections

- ♦ Even though we may be looking at high energy data, the low energy data and their interpretation is critically important
- \diamond Low energies:
 - The most accurate measurements of elemental and isotopic composition
 - ✦ LOW ENERGY DATA are used in the models to derive the propagation parameters that then extrapolated to ALL ENERGIES and to the WHOLE GALAXY
- Most of CR physics is about the origins of CRs and their propagation
- \diamond Correct interpretation of low energy data is the top priority
- The accuracy of the isotopic production cross sections is affecting the accuracy of our predictions!

Secondary/primary nuclei ratio & CR propagation

Using secondary/primary nuclei ratio (B/C) & radioactive isotopes (e.g. Be^{10}):

- \diamond Diffusion coefficient and its index
- \diamond Galactic halo size Z_h
- \diamond Propagation mode and its parameters (e.g., reacceleration V_A, convection V_z)
- ♦ Propagation parameters are model-dependent

Derivation of the halo size using radioactive clocks

- Large dispersion between different isotopes
- ♦ Upper limit is underfined
- \diamond Possible reasons:
 - Instrumental and/or data analysis errors
 - Errors in the calculations of the cross sections
 - ✦ Errors in the life-time estimates
 - Different origin of elements (local vs. global)

Effect of cross section improvements

Moskalenko+'2001

- More accurate calculation of the cross sections reduces the errors and the scattering
- ♦ Halo size derived from different isotopic ratios becomes consistent

XSCRC2017 • March 29-31, 2017 :: IVM 26

Nuclear Reaction Network + Cross Sections

Many different isotopes are produced via spallations of CR nuclei: A+(p,He)→B*+X

Nuclear Reaction Network + Cross Sections

Nuclear Reaction Network

nuc_package.cc

""**.** "" * nu	** ****.* cdata.dat	*** ****.**	** ****.*	**** ****.**** *	***.*** **** galprop packa	*.**** ****.*** age * 4/14/2000	*1
""**" **	**!***"*	****!****" *	***!****	" ****!*** " ****	!****"****!**	***" ****!****	***1
****.**	** ****•*	**** ****•*	*** ****	·*** ****·***	****.*** *	*** • * * * * * * * * • *	***
			### IQ	gor Moskalenko,	NASA/GSFC ###	# 3/23/2000 ###	*
" The n	ucdata.da	at file con	tains zi	.ai,zfl.afl,brl	,zf2.af2,br2	,zf3.af3, br3 :	
" decay " for +	he same a	with their	branchii	igs in order of	increasing as	L; and zi	
" Rule ·	- seconda	rv zf.af ca	n appear	ONLY BELOW the	25 - 2/2 doca	modes for eac	h nuclidal
" Any c	haracter	in the 1st	column	can be used to	5 –245 uelay	indues for eac	in nucliue:
" Data d	on the li	fetime T1/2	of long-	-live isotopes	Evampla		
" reana	lysis of	their deca	y probab	ilities. This	Litample.		
" secon	dary K-el	ectron capt	ure isoto	opes which is :	20N/σ12-> 10N	$a10(3\%) \pm 20Na^{3}$	11 (07%)
" the m	ain chanr	reaction ne	e beta(+,	/-) decay.	20101812-21914	CIO (2/0) + 2014a	TT (9770)
" "*" m	arks (Bra	anching*Mul	tiplicit	v) for 4He2	20Na11-×160	8 (20%) + 20Ne1() (80%)
"	==!===="=	!"=	===!===="	' ===== ! =====" === _			
7 51	2 <	array dime	nsions			-1n = minus 4 nuc	cleons
" ZI.AI	ZF.AF BR	ZF.AF BR	ZF.AF BR				
3.11	4.09 0.04	4.10 0.85	4.11 0.08	! 11Li 3-> 9Be 4,10)Be 4,11Be 4	1	
7.12	2.04 0.06	6.12 0.98	0. 0.	! 12N 7-> 4He 2*2	.12C 6 *	. /	
5.12	2.04 0.06	6.12 0.98	0. 0.	12B 5-> 4He 2*2	12C 6 * # of b	ranches 🦌	
4 12	5 12 1 00	0 0	0 0	$12B_{0} = 4 - 12B_{0} = 5 (1)$	2B _special)		level T
9 13	6 12 0 12	7 13 0 99	0. 0.	1 130 8-5120 6 13	N 7	31 / \	
4 13	4 12 1 00	0 0	0. 0.	1 13Po 4->12Po 4			
4.14	F 12 0 0E	E 12 0 01	5. 0. 5.14 0.14	1 14Do 4 >12D = 11		/∖ ▲ /∖	
9.14	0 15 1 00	0 0	0 0	146E 9->126 3,1	ы э , 14Б э		level TT
5.10	7 15 0 00	7 16 0 01	0. 0.	116C 6 15N 7 14	N 7	$2^2 / \rangle /$	
10.17	7.15 0.99	7.16 0.01	0. 0.	: 100 0->15N /,10			
10.17	7.13 0.03	8.16 0.96	9.17 0.01	: 17Ne10->13N 5,10	50 8,17F 9	▼ / \	
7.17	8.16 0.95	8.17 0.05	0. 0. 74	: 1/N 7->160 8,1	70 8	/ \	Inval TTT
/.18	0.14 0.12	8.17 0.14	8.18 0.74	: 1/N /->14C 6,1	/0 8,180 8		IEVEL TTT
11.19	10.18 1.00	0. 0.	0. 0.	! 19Na11->18Ne10		33 7	
7.19	8.18 0.62	8.19 0.38	0. 0.	! I9N /->180 8,19	90 8		
11.20	8.16 0.20	10.20 0.80	0. 0.	! 20Nall->160 8,20	Ne10		
12.20	10.19 0.03	11.20 0.97	0. 0.	! 20Mg12->19Ne10,20)Nall	//\	level IV
7.20	8.19 0.61	8.20 0.39	0. 0.	! 20N 7->190 8,20	0 8	24 / \	
12.21	10.20 0.29	11.21 0.71	0. 0.	! 21Mg12->20Ne10,21	lNa11	5 / \	
7.21	8.20 0.84	8.21 0.16	0. 0.	! 21N 7->200 8,21	LO 8		
14.24	12.23 0.07	13.24 0.93	0. 0.	! 24Si14->23Mg12,24	4A113		
11.28	12.27 0.01	12.28 0.99	0. 0.	! 28Na11->27Mg12,28	3Mg12		
16.29	14.28 0.47	15.29 0.53	0. 0.	! 29S 16->28Si14,29	P 15	25 /	ievei v
11.29	12.28 0.22	12.29 0.78	0. 0.	! 29Na11->28Mg12,29	Mg12	ິ <u></u> 3 / ∖	
11.30	12.28 0.01	12.29 0.30	12.30 0.69	! 30Na11->28Mg12,29	Mg12,30Mg12	▶ ♦	
15.32	16.32 1.00	0. 0.	0. 0.	! 32P 15->32S 16	[TOI]		
XSCRC2017 • March	29-31, 2017 :: IV	/M 30					

Big picture

Available systematics and approximations

- \diamond Total inelastic cross sections:
 - ✦ Barashenkov, Polansky
 - + Wellisch & Axen, 1996 (corrected)
 - ✦ Letaw, Silberberg, & Tsao, 1983
- ♦ Semi-empirical systematics for isotopic production cross sections:
 - + Webber et al., 1990, 2003
 - ✦ Silberberg, Tsao, Barghouty, 1998
- \diamond Data fits and approximations
- ♦ Nuclear codes (Mashnik, Gudima, Toneev, Titarenko, и др.)
 - ✦ CEM cascade-exciton model
 - ✦ LAQGSM Los Alamos quark-gluon string model
 - ✦ ALICE Particle Spectra from Compound Nucleus Decay
- ♦ GALPROP has the best available cross sections cross checked when possible
 - ✦ Could use all approximations mentioned above

Cross section matrix

- ♦ Matrix = product of CR abundances (ACE) @ 200 MeV/n and
 22Ne production cross sections @ 500 MeV/n
- Each secondary isotope is produced
 ⁴¹Ca through fragmentation and decays of heavier species

Calculation of
 ⁵³Mn production of each isotope involves
 100s of direct and indirect channels

Isotopic production

contributions

 of heavier
 isotopes to
 production of
 C and N
 isotopes

 Less abundant
 isotopes may

play important

role, example:

 ${}^{13}C^{14,15}N \rightarrow {}^{12}C$

 $^{15}N - >^{14}N$,

Relative

 \diamond

Moskalenko+'2003

Cross section matrix – zooming in Ne-isotopes

Production of ²²Ne

 \diamond Results depend on

Production of radio isotopes

XSCRC2017 • March 29-31, 2017 :: IVM 37

Some other examples

 10^{2}

 10^{3}

Energy, MeV-nucleon⁻¹

 10^{4}

- Examples with one or two contradictory data points
- ♦ Good that these are not major production channels

Evaluation procedure – very laborious

- ♦ Start with most important cross sections
- ♦ For each channel: collect data points if exist
- \diamond Look at individual experimental setups
- \diamond Look at what is measured:
 - ✤ individual isotopic cross sections
 - + cumulative cross sections = $\Sigma_i(\beta_i \sigma_i)$
 - isobaric cross sections A=const
 - ★ target isotopic composition: pure or natural
- ♦ Adjust exp. error! see next slides
- Compare with calculations choose the best one
- ♦ If well-measured make a fit to the data
- If no data points exist use nuclear codes or semi-phenomenological systematics
- Evaluate the accuracy using similar product nuclei

Example of measured cross sections

♦ Webber et al. 1998, PRC 58, 3539 (Suppl. tables: PRVCAN-58-074812 - 24)

♦ GALPROP nuc_package.cc – all Webber's error bars are increased to 15%-50%

Without accurate cross sections...

Ship wreck

Aivazovsky: Ninth wave (1850

Bottom line

Cosmic ray measurements nowadays are rather precise

♦ Claimed precision of AMS-02 is 1%-3%

To fully exploit such data, we should require a comparable accuracy from theoretical modeling

Realistic precision of nuclear cross sections is 10%-20% at best, but could be as bad as 50%-100% or worse

Comparing to the cost of space missions, cross section measurements at low-energy accelerators cost <1%, but having them accurate will increase the scientific outcome of the space missions 10 fold

 \diamond Let's see what can be done on the ground!