Study on heavier nuclear CRs - A challenge for the future -

XSCRC2017 at CERN Tsuneyoshi (Tune) Kamae Univ of Tokyo and SLAC/KIPAC

Introduction to myself and my involvement in the Fermi-LAT collaboration

- 1. Direct measurements (My contribution has been minimum.)
 - a. CR electrons + positrons
 - b. CR positron/electron
 - c. More to come?
- 2. Indirect measurements of Gal CRs (I have worked on a few SNRs and mol clouds.)
 - a. Nuclear CRs at SNRs: Evidence for HE nuclear and/or electron CRs at SNRs
 - b. Electron spectra at PSRs and associated PWNe: Accel sites, spectral evolution
 - c. Nuclear CRs at molecular clouds: Density of gas measured with nuclear CRs
 - d. Use less-complicated region in the Galaxy and extract info on CRs
- 3. Reuse knowledge acquired with analyses on Fermi-LAT for other CR experiments
 - a. Gammas from the Earth limb: cleaner place to extract nuclear CR spectra
 - b. Can we extract heavy nuclei CR contribution from diffuse Galactic emission?
- 4. Generation of exclusive air-shower events up to 10^15eV

Let's start from lower energies

In general:

- Higher fluxes of CRs
- More experimental data available
- Easier to simulate

SigInel(pp) below E_{cm}<3-4GeV

SigInel(np) below E_{cm}<3-4GeV

"Discovery" of pp>direct pions near thres

pp>"direct" pions in Gal CRs (PL=-2.75)

Nuclear enhancement factor: energy dependent

Then realized: Spallation gammas!

Spallation gammas are non-negligible

But how am I going to test the results?

Attempt 1: Earth-limb gamma rays by Fermi LAT

Abdo et al. PR D 80, 122004 (2009)

"Fermi large area telescope observations of the cosmic-ray induced gamma-ray emission of the Earth's atmosphere" Ackermann et al. PRL 112, 151103 (2014)

"Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope y-Ray Observations of Earth's Limb"

Earth-limb gamma rays

Atm density model: NRLMSISE2000

Fermi Earth Limb

Are we seeing spallation gammas?

Simulation: Earth limb location for protons

Simulation: Earth limb location for Fe

Earth limb location depends on Sig(inel)

But spallation gammas seem to be there

Fe on N: 1GeV/n(red), 10GeV/n(green) Calculation by T. Ogawa (JAEA)

C on N: 1GeV/n(red), 10GeV/n(green) Calculation by T. Ogawa (JAEA)

WEBBER ET AL.

Fragmentation model for Hydrogen target of Webber (2003) - No.1-

CR composition meas. in air showers

Spallation at the top of atmosphere dictates the energy deposition pattern on the surface

Very extensive experimental study C. Villagrasa-Canton et al, PRC 75, 044603 (2007)

I could not find comparison with Webber et al (2003)

Very extensive experimental study C. Villagrasa-Canton et al, PRC 75, 044603 (2007)

No comparison with Webber et al (2003)

Very extensive experimental study C. Villagrasa-Canton et al, PRC 75, 044603 (2007)

Questions to experts:

- 1) How do exps compare with Webber (2003)
- 2) New models?

p_T of fragments: any suggestions

 p_T distribution dictates the lateral development and fluctuation of air-shower development.

Can some exp in RHIC measure p_T of fragments?

New simple exp to test fragmentation models? - Tot Xsec by Cecchini et al (2008) -

 $\sigma_{tot} = \pi r_0^2 \ (A_P^{1/3} + A_T^{1/3} - b_0)^2$

Can they measure p_T of fragments?

 $r_0 = 1.31$ fm, $b_0 = 1.0$, A_P and A_T are the projectile and target mass numbers,

Figure 3: Total fragmentation cross sections for (a) Fe ions of different energies in CH_2 and Al targets and (b) for Si ions in CH_2 , CR39 and Al targets. For comparison the measured cross sections from refs. [6, 7, 8, 9] are also shown, together with the predictions from Eq. 2.

We need experiments on Fe+N/O, C+N/O, O+N/O, Ne+N/O

I found a nice solid target with approx. right mix of N and O

 N₂O: Nitrous oxide, known as laughing gas, is used as a dissociative anaesthetic. A colorless, odorless non-flammable gas at room temperature.
Safety code: ICSC 0067 (Avoid direct contact, Skin:Frostbite, Eyes:Frostbite)
Melting point = -102C Probably stay solid if put on a cold plate submerged in liq N₂
Density of solid N₂O = about 1.0?

Thank you for invitation to this Nice Conference and your attention