Measuring anti-p XS with a fixed target magnetic spectrometer

Paolo Zuccon – MIT

CERN, March 31st 2017

XSCRC2017: Cross sections for Cosmic Rays @ CERN

Introduction

- anti-p production cross section from p-p and p-He interactions is poorly measured and cannot simply constrained from available measurements.
- an accurate prediction of the expected anti-p flux in cosmic rays in the rigidity range from few GeV to several hundreds of GeVs, is interesting to understand cosmic ray an possibly search for signals of new physics
- LHC-b collaboration reported a measurement the anti-p XS from 8 TeV p-He, and foresee a similar measurement with 4TeV protons.
- we want to investigate the possibility to perform a measurement with the SPS protons at 190 and 400 GeV on fixed LH2 and LHe targets, and a magnetic spectrometer

Outline

- p-p and p-He events characterization with FLUKA
- Inject FLUKA events on COMPASS simulation and reconstruction
- Study the COMPASS performance in reconstructing the events
- Discuss a possible procedure to measure a double differential anti-p production cross section

• Estimate the expected accuracy of such a measurement

p-LH2 event features @ 190 GeV/c

p-LH2 event features @ 400 GeV/c

p-LHe event features @ 190 GeV/c

2.25 10⁵ interacting events

p-LHe event features @ 400 GeV/c

COMPASS @ CERN north area

COMPASS simulation

- I used the FLUKA generated interaction as input for the official COMPASS Geant 4 simulation (TGEANT)
- I then passed the produced files through the official COMPASS reconstruction software

Acknowledgements and disclaimer

- I am not a member of COMPASS
- I thanks M. Chiosso, O. Denisov, for kindly allowing me of using COMPASS software and for the outstanding support
- I made my own minor modifications to the sw, so anything right is thanks to the COMPASS collaboration, all the mistakes are my own faults ☺

COMPASS simulation (p-p 190GeV)

Massachusetts Institute of Technology

COMPASS simulation (p-p 190GeV)

COMPASS Rec Efficiency (p-p 190GeV)

Compass Rec accuracy

Massachusetts Institute of Technology

RICH1 performance ($\eta = 1.0014$)

(wished) RICH2 performance ($\eta = 1.02$)

anti-p identification and measurement

Cross section measurement

- Strategy
 - Count all the p-p (or p-He) interaction in the target (R_i)
 - Identify events with one (or multiple) anti-p vs reconstructed momentum and angle $(R_s (p, \theta))$
 - Calculate the double differential cross section as

$$\frac{d\sigma_{\overline{p}}}{dp \ d\theta} = \frac{R_s(p,\theta)}{R_i}$$

• Several possible pitfalls and sources of systematic errors!

Compass Trigger system

Fig. 54. Allowed combinations for target pointing in the RPD part of the proton trigger.

Fig. 4. Side view of the target region with the liquid hydrogen target system.

Rate statistics and pileup

- Typical beam intensity is 5 10⁷ p/s for a 9.8s spill
- We expect ~ 1.2 % of the protons to interact with the 40cm LH2 target → ~ 4 10⁵ interaction/s
- COMPASS trigger has a time resolution of 5 μs
- Vertex spatial resolution better than 4 mm
- Pile-up is under control and not a problem
- Statistical errors becomes negligible after few hour of data taking.

Upstream Threshold Cherenkov counter

Lost Interaction events

- Select a fiducial volume on the target [-68,-30] cm
- Look how many events have a reconstructed vertex withig the fiducial volume

Reconstruction uncertainties

	efficiency	est sys error
Track Recon	95%	~1%
Rich Efficiency	~ 90%	~3 %
RICH PID	99 to 75 %	0.1 to 5 %
Vertex error	98%	0.5%
Beam Purity	99.9%	0.5%
TOTAL		5 to 10 %

Status of a possible measurement

	anti-p (17-45 GeV)	anti-p (5-45 GeV)
p-p @ 190 GeV	OK analyze 2009 data	Need RICH2
p-He @ 190 GeV	refurbish target LH2 → LHe	+ RICH2
p-p @ 400 GeV	Upgrade beamline	+ RICH2
p-He @ 400 GeV	refurbish target LH2 → LHe Upgrade beamline	+ RICH2

Possible outcome of a measurement

Summary

- We studied the possibility to measure anti-p cross section from p-p and p-He with SPS beam and the COMPASS detector
- COMPASS seems to have a good performances to perform a measurement of the order of 4 to 10% depending on the anti-p momentum in the range (17 to 45 GeV) over an extended p_t range.
- With upgrades to the target, RICH and/or beamline more ambitious goals seem reachable.
- We are willing to analyze the 2009 to confirm this exercise and to possibly produce a measurement.

