Measuring anti-p XS with a fixed target magnetic spectrometer

Paolo Zuccon – MIT
CERN, March 31st 2017

\textbf{XSCRC2017: Cross sections for Cosmic Rays @ CERN}
Introduction

• anti-p production cross section from p-p and p-He interactions is poorly measured and cannot simply constrained from available measurements.

• an accurate prediction of the expected anti-p flux in cosmic rays in the rigidity range from few GeV to several hundreds of GeVs, is interesting to understand cosmic ray an possibly search for signals of new physics

• LHC-b collaboration reported a measurement the anti-p XS from 8 TeV p-He, and foresee a similar measurement with 4TeV protons.

• we want to investigate the possibility to perform a measurement with the SPS protons at 190 and 400 GeV on fixed LH2 and LHe targets, and a magnetic spectrometer
Outline

• p-p and p-He events characterization with FLUKA
• Inject FLUKA events on COMPASS simulation and reconstruction
• Study the COMPASS performance in reconstructing the events
• Discuss a possible procedure to measure a double differential anti-p production cross section
• Estimate the expected accuracy of such a measurement
p-LH2 event features @ 190 GeV/c

3.05 10^5 interacting events

Number of tracks

- Mean: 9.871
- RMS: 4.058

- Z! = 0 all

Anti-protons

- Mean: 15.31
- RMS: 14.1

Paolo Zuccon, XSCRC 2017, CERN

Page 4
p-LH2 event features @ 400 GeV/c

1.06 \times 10^5$ interacting events

![Graphs showing event features and distributions.]

Paolo Zuccon, XSCRC 2017, CERN
Page 5
p-LHe event features @ 190 GeV/c

2.25 \times 10^5$ interacting events

![Graphs showing event features at 190 GeV/c with histograms and distributions of anti-protons and tracks.](image-url)

Paolo Zuccon, XSCRC 2017, CERN
Page 6
p-LHe event features @ 400 GeV/c

2.4 \times 10^5$ interacting events

Paolo Zuccon, XSCRC 2017, CERN
Acceptance:

± 180 mrad

± 10 deg

$\eta > 2.4$
COMPASS simulation

- I used the FLUKA generated interaction as input for the official COMPASS Geant 4 simulation (TGEANT)
- I then passed the produced files through the official COMPASS reconstruction software

Acknowledgements and disclaimer

- I am not a member of COMPASS
- I thanks M. Chiosso, O. Denisov, for kindly allowing me of using COMPASS software and for the outstanding support
- I made my own minor modifications to the sw, so anything right is thanks to the COMPASS collaboration, all the mistakes are my own faults 😊
COMPASS simulation \((p-p 190\text{GeV}) \)

Number of tracks \((\theta < 10 \text{ deg})\)

- **MC**
 - Mean: 5.424
 - RMS: 2.925

- **DATA**
 - Mean: 4.957
 - RMS: 2.715

Number of lost tracks \((\theta < 10 \text{ deg})\)

- Mean: 4.5
- RMS: 2.7

Vertex position

- Mean: 0
- RMS: 2.5

Vertex resolution

- Mean: 0
- RMS: 0.403

Paolo Zuccon, XSCRC 2017, CERN
Page 10
COMPASS Rec Efficiency (p-p 190GeV)

\(p \)

\(\pi^+ \)

\(\bar{p} \)

\(\pi^- \)

Paolo Zucccon, XSCRC 2017, CERN
Page 12
Compass Rec accuracy

Paolo Zuccon, XSCRC 2017, CERN
Page 13
RICH1 performance \((\eta = 1.0014)\)

Useful range for protons 17 to 45 GeV
RICH2 performance \((\eta = 1.02) \)

Useful range for protons 4 to 18 GeV
anti-\(p \) identification and measurement

\(p-p \) @ 190GeV

\(p-\text{He} \) @ 400GeV
Cross section measurement

• Strategy
 – Count all the p-p (or p-He) interaction in the target (R_i)
 – Identify events with one (or multiple) anti-p vs reconstructed momentum and angle ($R_s (p, \theta)$)
 – Calculate the double differential cross section as
 \[
 \frac{d\sigma_{\bar{p}}}{dp \, d\theta} = \frac{R_s (p, \theta)}{R_i}
 \]

• Several possible pitfalls and sources of systematic errors!
Compass Trigger system

Fig. 54. Allowed combinations for target pointing in the RPD part of the proton trigger.

Fig. 4. Side view of the target region with the liquid hydrogen target system.

Fig. 51. Arrangement of trigger elements in the spectrometer (schematic side view, not to scale).

Fig. 53. Time residual of the beam trigger.
Rate statistics and pileup

• Typical beam intensity is 5×10^7 p/s for a 9.8s spill

• We expect $\sim 1.2\%$ of the protons to interact with the 40cm LH2 target $\rightarrow \sim 4 \times 10^5$ interaction/s

• COMPASS trigger has a time resolution of 5 μs

• Vertex spatial resolution better than 4 mm

• Pile-up is under control and not a problem

• Statistical errors becomes negligible after few hour of data taking.

Upstream Threshold Cherenkov counter

Beam and Trigger error $\sim 0.5\%$
Lost Interaction events

- Select a fiducial volume on the target [-68,-30] cm
- Look how many events have a reconstructed vertex withing the fiducial volume

MC events: 288312
No Vertex: 2753 (0.95%)
Vtx outside: 2856 (0.99%)

Thanks to the Recoil Detector no-vertex events can be cross-checked with data

Vertex error 0.5%
Reconstruction uncertainties

<table>
<thead>
<tr>
<th></th>
<th>efficiency</th>
<th>est sys error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Recon</td>
<td>95%</td>
<td>~1%</td>
</tr>
<tr>
<td>Rich Efficiency</td>
<td>~ 90%</td>
<td>~3 %</td>
</tr>
<tr>
<td>RICH PID</td>
<td>99 to 75 %</td>
<td>0.1 to 5 %</td>
</tr>
<tr>
<td>Vertex error</td>
<td>98%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Beam Purity</td>
<td>99.9%</td>
<td>0.5%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>5 to 10 %</td>
</tr>
</tbody>
</table>
Status of a possible measurement

<table>
<thead>
<tr>
<th></th>
<th>anti-p (17-45 GeV)</th>
<th>anti-p (5-45 GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-p @ 190 GeV</td>
<td>OK analyze 2009 data</td>
<td>Need RICH2</td>
</tr>
<tr>
<td>p-He @ 190 GeV</td>
<td>refurbish target LH2 (\rightarrow) LHe</td>
<td>+ RICH2</td>
</tr>
<tr>
<td>p-p @ 400 GeV</td>
<td>Upgrade beamline</td>
<td>+ RICH2</td>
</tr>
<tr>
<td>p-He @ 400 GeV</td>
<td>refurbish target LH2 (\rightarrow) LHe Upgrade beamline</td>
<td>+ RICH2</td>
</tr>
</tbody>
</table>
Possible outcome of a measurement

$p-p @ 190\text{GeV}$

$p-\text{He} @ 400\text{GeV}$
Summary

• We studied the possibility to measure anti-p cross section from p-p and p-He with SPS beam and the COMPASS detector

• COMPASS seems to have a good performances to perform a measurement of the order of 4 to 10% depending on the anti-p momentum in the range (17 to 45 GeV) over an extended p_t range.

• With upgrades to the target, RICH and/or beamline more ambitious goals seem reachable.

• We are willing to analyze the 2009 to confirm this exercise and to possibly produce a measurement.