# Update on the impedance of stripline BPMs in the HL-LHC triplet region 

## N. Biancacci, R. De Maria, B.Salvant

Acknowledgement: T.Lefevre, D.Draskovic

## Studied models

Octagonal- with tungsten


Strip to strip $=112 \mathrm{~mm}$

Circular - no tungsten


Strip to strip $=123 \mathrm{~mm}$

PS: No inermet anymore.

## Simulations: circular shape

Re-worked out the stripline impedance calculations to account for 4 stripes. Ng 's approach was for 2 stripes -> equivalence to 2 -stripe case if we double the angle.
$Z_{l}(\omega)=\left(\frac{2 \phi_{0}}{\pi}\right)^{2} Z_{s}\left(\sin ^{2}(k l)+j \sin (k l) \cos (k l)\right) \quad$ with $\quad k=\omega / c$
$Z_{x, y}^{d i p}(\omega)=\frac{8}{k} \frac{Z_{s}}{(\pi b)^{2}} \sin ^{2}\left(\phi_{0}\right)\left(\sin ^{2}(k l)+j \sin (k l) \cos (k l)\right)$
Circular shape

Good agreement with CST simulations!


## Simulations: octogonal shape

Comparing the octogonal shape simulations with theory (circular) we find an increase up to $50 \%$ in transverse, and up to a factor of 2 in longitudinal due to the change in geometry.


## BPMSQ optics at 15 cm beta*



## IP1 impedances - circular shape

|  | $\mathbf{s}$ from IP [m] | $\beta_{x}[\mathrm{~m}]$ | $\beta_{y}[\mathrm{~m}]$ | $\mathbf{d}[\mathrm{mm}]$ | $\mathbf{b}[\mathrm{mm}]$ | $Z_{x}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{y}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{l}^{\text {eff }}[\mathrm{m} \Omega]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BPMSQ.4L1.B1 | -82.0 | $7,221.0$ | $17,233.0$ | 123.0 | 65.5 | 2.0 | 4.5 | 0.002 |
| BPMSQ.B3L1.B1 | -74.0 | $7,694.0$ | $19,296.0$ | 123.0 | 65.5 | 2.1 | 5.1 | 0.002 |
| BPMSQT.A3L1.B1 | -66.0 | $8,150.0$ | $21,327.0$ | 123.0 | 65.5 | 2.2 | 5.6 | 0.002 |
| BPMSQT.B2L1.B1 | -55.0 | $14,113.0$ | $14,111.0$ | 123.0 | 65.5 | 3.8 | 3.7 | 0.002 |
| BPMSQT.A2L1.B1 | -44.0 | $21,430.0$ | $5,553.0$ | 123.0 | 65.5 | 5.8 | 1.5 | 0.002 |
| BPMSQ.1L1.B1 | -33.0 | $10,870.0$ | $4,654.0$ | 123.0 | 65.5 | 2.9 | 1.2 | 0.002 |
| BPMSQW.1L1.B1 | -22.0 | $3,213.0$ | $3,213.0$ | 112.0 | 65.5 | 1.3 | 1.2 | 0.002 |
| BPMSQW.1R1.B1 | 22.0 | $3,284.0$ | $3,284.0$ | 112.0 | 65.5 | 1.3 | 1.2 | 0.002 |
| BPMSQ.1R1.B1 | 33.0 | $4,635.0$ | $11,185.0$ | 123.0 | 65.5 | 1.3 | 2.9 | 0.002 |
| BPMSQT.A2R1.B1 | 44.0 | $5,630.0$ | $21,483.0$ | 123.0 | 65.5 | 1.5 | 5.6 | 0.002 |
| BPMSQT.B2R1.B1 | 55.0 | $14,439.0$ | $13,829.0$ | 123.0 | 65.5 | 3.9 | 3.6 | 0.002 |
| BPMSQT.A3R1.B1 | 66.0 | $21,263.0$ | $8,135.0$ | 123.0 | 65.5 | 5.8 | 2.1 | 0.002 |
| BPMSQ.B3R1.B1 | 74.0 | $19,234.0$ | $7,680.0$ | 123.0 | 65.5 | 5.2 | 2.0 | 0.002 |
| BPMSQ.4R1.B1 | 82.0 | $17,175.0$ | $7,208.0$ | 123.0 | 65.5 | 4.6 | 1.9 | 0.002 |

On average we have $Z x, Z y=3 k O h m / m$ and $Z / n=0.002 \mathrm{mOhm}$ per BPMSQ

## IP5 impedances - circular shape

|  | $\mathbf{s}$ from IP $[\mathrm{m}]$ | $\beta_{x}[\mathrm{~m}]$ | $\beta_{y}[\mathrm{~m}]$ | $\mathrm{d}[\mathrm{mm}]$ | $\mathbf{b}[\mathrm{mm}]$ | $Z_{x}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{y}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{l}^{\text {eff }}[\mathrm{m} \Omega]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BPMSQ.4L1.B1 | -82.0 | $7,221.0$ | $17,233.0$ | 123.0 | 65.5 | 2.0 | 4.5 | 0.002 |
| BPMSQ.B3L1.B1 | -74.0 | $7,694.0$ | $19,296.0$ | 123.0 | 65.5 | 2.1 | 5.1 | 0.002 |
| BPMSQT.A3L1.B1 | -66.0 | $8,150.0$ | $21,327.0$ | 123.0 | 65.5 | 2.2 | 5.6 | 0.002 |
| BPMSQT.B2L1.B1 | -55.0 | $14,113.0$ | $14,111.0$ | 123.0 | 65.5 | 3.8 | 3.7 | 0.002 |
| BPMSQT.A2L1.B1 | -44.0 | $21,430.0$ | $5,553.0$ | 123.0 | 65.5 | 5.8 | 1.5 | 0.002 |
| BPMSQ.1L1.B1 | -33.0 | $10,870.0$ | $4,654.0$ | 123.0 | 65.5 | 2.9 | 1.2 | 0.002 |
| BPMSQW.1L1.B1 | -22.0 | $3,213.0$ | $3,213.0$ | 112.0 | 65.5 | 1.3 | 1.2 | 0.002 |
| BPMSQW.1R1.B1 | 22.0 | $3,284.0$ | $3,284.0$ | 112.0 | 65.5 | 1.3 | 1.2 | 0.002 |
| BPMSQ.1R1.B1 | 33.0 | $4,635.0$ | $11,185.0$ | 123.0 | 65.5 | 1.3 | 2.9 | 0.002 |
| BPMSQT.A2R1.B1 | 44.0 | $5,630.0$ | $21,483.0$ | 123.0 | 65.5 | 1.5 | 5.6 | 0.002 |
| BPMSQT.B2R1.B1 | 55.0 | $14,439.0$ | $13,829.0$ | 123.0 | 65.5 | 3.9 | 3.6 | 0.002 |
| BPMSQT.A3R1.B1 | 66.0 | $21,263.0$ | $8,135.0$ | 123.0 | 65.5 | 5.8 | 2.1 | 0.002 |
| BPMSQ.B3R1.B1 | 74.0 | $19,234.0$ | $7,680.0$ | 123.0 | 65.5 | 5.2 | 2.0 | 0.002 |
| BPMSQ.4R1.B1 | 82.0 | $17,175.0$ | $7,208.0$ | 123.0 | 65.5 | 4.6 | 1.9 | 0.002 |

On average we have $Z x, Z y=3 k O h m / m$ and $Z / n=0.002 \mathrm{mOhm}$ per BPMSQ

## Effective impedance

- Accounting for all the BPMSQs with analytical formulas, the effective impedance is, for circular shape:

BPMQ total impedance
Zx = $87 \mathrm{kOhm} / \mathrm{m}$,
$\mathrm{Zy}=84 \mathrm{kOhm} / \mathrm{m}$
$\mathrm{Z} / \mathrm{n}=0.050 \mathrm{mOhm}$

$$
\begin{aligned}
& \mathrm{HL}-\mathrm{LHC}(15 \mathrm{~cm}) \\
& \mathrm{Zx}=20.8 \mathrm{MOhm} / \mathrm{m}, \\
& \mathrm{Zy}=17.8 \mathrm{MOhm} / \mathrm{m} \\
& \mathrm{Z} / \mathrm{n}=82 \mathrm{mOhm}
\end{aligned}
$$

- If we account for only inductive impedance at max beta we get Zt_eff in the order of 280 kOhm : pessimistic approach as the impedance rolls off quickly
- In case we use octogonal shape we have up to $50 \%$ increase in transverse impedance -> $130 \mathrm{kOhm} / \mathrm{m}$
- In case we use octogonal shape we have up to $50 \%$ increase in longitudinal impedance -> 0.1 mOhm


## Update on beam screen dimensions Nominal dimensions

Nominal values of the beam screen aperture are defined by:

## Cold Bore:

1. The coil inner radius at 1.9 K is 74.350 mm [P. Ferracin]
a. The insulated cable inner radus position at room temperature, with no stress, is 75 mm .
b. The deformation due to pre-load and cool-down is 0.400 mm
c. Quench heaters and insulation: $0.1 \mathrm{~mm}+0.15 \mathrm{~mm}$
2. Gap coil/insulated cold bore at $1.9 \mathrm{~K}: 1.5 \mathrm{~mm}$ [R. Van Weelderen]
3. Cold bore insulation: 0.2 mm [P. Ferracin]
4. Tolerance on the cold bore outer diameter (thickness): $0 /+0.5 \mathrm{~mm}$
$\rightarrow$ Nominal cold bore outer radius at $1.9 \mathrm{~K}: 72.15 \mathrm{~mm}$
$\rightarrow$ Nominal cold bore outer radius at room temperature: 72.35 mm

$\rightarrow$ Nominal cold bore inner radius (thickness 4 mm for Q1 to D1) at room temperature: 68.35 mm
Beam screen:
5. Gap w.r.t cold bore: 1.5 mm
6. Shielding thickness Q1: 16 mm, Q2-D1: 6 mm
7. Beam screen wall thickness: 1 mm

C.Garion, $7^{\text {th }} \mathrm{HL}$-LHC TCC

## IP1 impedances - circular shape after screen aperture update

|  | $\mathbf{s}$ from IP $[\mathrm{m}]$ | $\beta_{x}[\mathrm{~m}]$ | $\beta_{y}[\mathrm{~m}]$ | $\mathbf{d}[\mathrm{mm}]$ | $\mathbf{b}[\mathrm{mm}]$ | $Z_{x}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{y}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{l}^{\text {eff }}[\mathrm{m} \Omega]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BPMSQ.4L1.B1 | -82.0 | $7,221.0$ | $17,233.0$ | 123.0 | 65.5 | 2.0 | 4.5 | 0.002 |
| BPMSQ.B3L1.B1 | -74.0 | $7,694.0$ | $19,296.0$ | 123.0 | 65.5 | 2.1 | 5.1 | 0.002 |
| BPMSQT.A3L1.B1 | -66.0 | $8,150.0$ | $21,327.0$ | 123.0 | 65.5 | 2.2 | 5.6 | 0.002 |
| BPMSQT.B2L1.B1 | -55.0 | $14,113.0$ | $14,111.0$ | 123.0 | 65.5 | 3.8 | 3.7 | 0.002 |
| BPMSQT.A2L1.B1 | -44.0 | $21,430.0$ | $5,553.0$ | 123.0 | 65.5 | 5.8 | 1.5 | 0.002 |
| BPMSQ.1L1.B1 | -33.0 | $10,870.0$ | $4,654.0$ | 123.0 | 65.5 | 2.9 | 1.2 | 0.002 |
| BPMSQW.1L1.B1 | -22.0 | $3,213.0$ | $3,213.0$ | 102.0 | 65.5 | 1.9 | 1.8 | 0.002 |
| BPMSQW.1R1.B1 | 22.0 | $3,284.0$ | $3,284.0$ | 102.0 | 65.5 | 1.9 | 1.9 | 0.002 |
| BPMSQ.1R1.B1 | 33.0 | $4,635.0$ | $11,185.0$ | 123.0 | 65.5 | 1.3 | 2.9 | 0.002 |
| BPMSQT.A2R1.B1 | 44.0 | $5,630.0$ | $21,483.0$ | 123.0 | 65.5 | 1.5 | 5.6 | 0.002 |
| BPMSQT.B2R1.B1 | 55.0 | $14,439.0$ | $13,829.0$ | 123.0 | 65.5 | 3.9 | 3.6 | 0.002 |
| BPMSQT.A3R1.B1 | 66.0 | $21,263.0$ | $8,135.0$ | 123.0 | 65.5 | 5.8 | 2.1 | 0.002 |
| BPMSQ.B3R1.B1 | 74.0 | $19,234.0$ | $7,680.0$ | 123.0 | 65.5 | 5.2 | 2.0 | 0.002 |
| BPMSQ.4R1.B1 | 82.0 | $17,175.0$ | $7,208.0$ | 123.0 | 65.5 | 4.6 | 1.9 | 0.002 |

-> Negligible change in impedance

## IP5 impedances - circular shape after screen aperture update

|  | $\mathbf{s}$ from IP $[\mathrm{m}]$ | $\beta_{x}[\mathrm{~m}]$ | $\beta_{y}[\mathrm{~m}]$ | $\mathbf{d}[\mathrm{mm}]$ | $\mathbf{b}[\mathrm{mm}]$ | $Z_{x}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{y}^{\text {eff }}[\mathbf{k} \Omega / \mathrm{m}]$ | $Z_{l}^{\text {eff }}[\mathrm{m} \Omega]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BPMSQ.4L5.B1 | -82.0 | $7,221.0$ | $17,233.0$ | 123.0 | 65.5 | 2.0 | 4.5 | 0.002 |
| BPMSQ.B3L5.B1 | -74.0 | $7,694.0$ | $19,296.0$ | 123.0 | 65.5 | 2.1 | 5.1 | 0.002 |
| BPMSQT.A3L5.B1 | -66.0 | $8,150.0$ | $21,327.0$ | 123.0 | 65.5 | 2.2 | 5.6 | 0.002 |
| BPMSQT.B2L5.B1 | -55.0 | $14,113.0$ | $14,111.0$ | 123.0 | 65.5 | 3.8 | 3.7 | 0.002 |
| BPMSQT.A2L5.B1 | -44.0 | $21,430.0$ | $5,553.0$ | 123.0 | 65.5 | 5.8 | 1.5 | 0.002 |
| BPMSQ.1L5.B1 | -33.0 | $10,870.0$ | $4,654.0$ | 123.0 | 65.5 | 2.9 | 1.2 | 0.002 |
| BPMSQW.1L5.B1 | -22.0 | $3,213.0$ | $3,213.0$ | 102.0 | 65.5 | 1.9 | 1.8 | 0.002 |
| BPMSQW.1R5.B1 | 22.0 | $3,284.0$ | $3,284.0$ | 102.0 | 65.5 | 1.9 | 1.9 | 0.002 |
| BPMSQ.1R5.B1 | 33.0 | $4,635.0$ | $11,185.0$ | 123.0 | 65.5 | 1.3 | 2.9 | 0.002 |
| BPMSQT.A2R5.B1 | 44.0 | $5,630.0$ | $21,483.0$ | 123.0 | 65.5 | 1.5 | 5.6 | 0.002 |
| BPMSQT.B2R5.B1 | 55.0 | $14,439.0$ | $13,829.0$ | 123.0 | 65.5 | 3.9 | 3.6 | 0.002 |
| BPMSQT.A3R5.B1 | 66.0 | $21,263.0$ | $8,135.0$ | 123.0 | 65.5 | 5.8 | 2.1 | 0.002 |
| BPMSQ.B3R5.B1 | 74.0 | $19,234.0$ | $7,680.0$ | 123.0 | 65.5 | 5.2 | 2.0 | 0.002 |
| BPMSQ.4R5.B1 | 82.0 | $17,175.0$ | $7,208.0$ | 123.0 | 65.5 | 4.6 | 1.9 | 0.002 |

-> Negligible change in impedance

## Update on effective impedance

- Accounting for all the BPMSQs with analytical formulas, the effective impedance is, for circular shape:

BPMQ total impedance<br>Zx = 90 kOhm/m,<br>$\mathrm{Zy}=87 \mathrm{kOhm} / \mathrm{m}$<br>$\mathrm{Z} / \mathrm{n}=0.050 \mathrm{mOhm}$<br>HL-LHC ( 15 cm )<br>$\mathrm{Zx}=20.8 \mathrm{MOhm} / \mathrm{m}$,<br>$\mathrm{Zy}=17.8 \mathrm{MOhm} / \mathrm{m}$<br>$\mathrm{Z} / \mathrm{n}=82 \mathrm{mOhm}$

- Similar impact as before.


## Conclusions and outlook

- The triplet stripline BPMs impedance look negligible in both configurations, octogonal and circular, wr.t. the full HLLHC impedance model.
- The longitudinal impedance is $<0.1 \%$
- CST simulations have been investigated w.r.t. analytical formulas extended to the 4-stripes case for both shapes.
- Analytical estimates predict a very small impact of the aperture reduction in Q1's BPMSQ: nevertheless the CAD model should be updated to the new beam screen specs and new simulations should be performed.


## Appendix

1D Results \Particle Beams \ParticleBeam2 WWake impedance [Imaginary Part]


1D Results\Particle Beams\ParticleBeam2\Wake impedance [Real Part]


1D Results Particle Beams ParticleBeam2\Wake impedance [Real Part]



