Crab Cavity Failure Scenarios with 200 MHz

Andrea Santamaría García H. Burkhardt, K. Sjobak 23th September 2016 78th HiLumi WP2 Meeting C

Table of contents

Introduction

- Crabbing
- Toy Model
- Initial Longitudinal Distribution
- Initial Distribution at TCP.D6L7.B1 (5.7 σ)

2 Results

- Failure Turn at TCP.D6L7.B1
- 1 Turn After the Failure at TCP.D6L7.B1
- 4 Turns After the Failure at TCP.D6L7.B1
- 7 Turns After the Failure at TCP.D6L7.B1
- Losses
- Centroid Displacement

3 Outlook

A crab cavity is a hollow superconductor that stores energy through the standing waves that resonate inside its structure.

- The standing waves are synchronized with the arrival of the bunch so that their phase is zero.
- The particles of the center of the bunch will then see no voltage, while the ones at larger z will see an increasing voltage.

Crabbing in IP1

Turn 2, 400MHz

Turn 2, 200MHz

Toy Model

A **phase slip** can kick the core of the beam, making it the most dangerous failure scenario.

- For the purpose of this study, a phase slip of 60 ° was selected as failure scenario (for the 4 crab cavities downstream).
- The crab cavity voltage is kept constant at 3.4 MV.

Some remarks:

- This failure case corresponds to a direct change of the crab cavity settings from the control room. The limitation is the power that can be supplied to the cavity.
- Four crab cavities were chosen in order to have a more powerful kick, so that the failure is visible. Reducing the number of cavities would reduce the amplitude of the kick.

Additional details:

- Particles tracked with SixTrack 4.5.38.
- Machine model from optics 1.2 for HL-LHC.
- Nominal collimator openings.

Initial Longitudinal Distribution

400 MHz

200 MHz

The bucket length is doubled.

 Energy spread and momentum compaction factor remain the same.

Initial Distribution at TCP.D6L7.B1 (5.7 σ)

Turn 2, 400MHz

Turn 2, 200MHz

Failure Turn at TCP.D6L7.B1

Turn 10, 200MHz

1 Turn After the Failure at TCP.D6L7.B1

Turn 11, 400MHz

Turn 11, 200MHz

4 Turns After the Failure at TCP.D6L7.B1

Turn 14, 400MHz

Turn 14, 200MHz

7 Turns After the Failure at TCP.D6L7.B1

Turn 17, 400MHz

Turn 17, 200MHz

Losses

400 MHz

- Losses in the collimation system: 44 %
- Losses in the TCP : 35 %

200 MHz

- Losses in the collimation system: 35 %
- Losses in the TCP : 28 %

Centroid Displacement

Portrays the average movement of the particles that make up the bunch.

Outlook

- ✓ By doubling the bunch length, we are spreading the particles in z. If we keep the same number of particles this means that the longitudinal density decreases.
- Crabbing couples transverse and longitudinal planes, so in a case of failure that would affect the core, this dilution plays a role in the losses around the ring.
- ✓ This translates into 10% less losses in the collimation system for 200 MHz system, for this specific failure case.
- ✓ More realistic failure cases are always milder, so we can assume that the effects of the 200 MHz RF system will be less visible.

Archive

ECFA, Joint Annual Meeting and Hollow e- lens Review 2016 In preparation Crab Cavity Failure Studies

Introduction to Crab Cavities & their Failure Modes., A. Santamaría García C

IPAC'16

- Machine Protection from Fast Crab Cavity Failures in the High Luminosity LHC,
 A. Santamaría García et al. Image: Comparison of the termination of terminatio of termination of termination of te
- <u>Time Scale of Crab Cavity Failures Relevant for High Luminosity LHC</u>, K. Sjobak et al.

Joint HiLumi LHC-LARP Meeting 2015

- 🗧 Crab Cavity Failure Modes and IR Protection., A. Santamaría García 🗹
- 🗕 Crab Cavity Failure Scenarios and their Tracking., K. Sjobak 🗹

IPAC'15

- General functionality for turn-dependent element properties in SixTrack,
 K. Sjobak et al. C
- <u>Limits on failure scenarios for crab cavities in the HL-LHC</u>, A. Santamaría García et al.