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= Mode coupling instabilities
= Head-on effects

= Long-range coherent beam-beam modes
= Stablility diagrams
= Sgueeze

= Distortion of the distribution
= Head-on effect

= Conclusion



The circulant matrix model
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= Derive the transverse linearised . ND/Os,_ om
equation of motion for a discretised SN/
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= Beam coupling impedance NS

= Linearised coherent beam-beam forces (6D, in
arbitrarily complex configurations)

= Transverse feedback

= Analyse the stability of the one turn
matrix with normal mode analysis

= Neglects Landau damping
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E@W Mode coupling instability
A

of collldmg beams

= 2 head-on interactions
(6D) with symmetric
phase advances

. | 10—4 > 1600 turns | |
- HL-LHC baseline N T

parameters but : ST AN NS NN N S
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= Coupling instabilities are observed when coherent beam-

beam mode frequencies overlap with head-tail modes
= Observe in dedicated MDs at the LHC

= Landau damping can be modeled in multiparticle
tracking simluations



Mode coupling instability
of colliding beams
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= Coupling instabilities are observed when coherent beam-

beam mode frequencies overlap with head-tail modes

= Observe in dedicated MDs at the LHC

= Landau damping can be modeled in multiparticle
tracking simluations



Effect of the
@]

transverse feedback
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= The transverse feedback based on the dipolar moment
(e.g. ADT) acts efficiently on modes with a dipolar
component



Effect of chromaticity <«

= Chromaticity
changes the nature
of the nature of the
head-taill modes

— modifying their
coupling through
beam-beam
Interactions

_ x 1072
= |In absence of synchrobetatron coupling due to the

beam-beam interaction, the modes couple through
their dipolar component

— coupled instabilities are still efficiently mitigated by a
transverse feedback based on the dipolar moment (e.g. ADT)
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their dipolar component

— coupled instabilities are still efficiently mitigated by a
transverse feedback based on the dipolar moment (e.g. ADT)




Effect of chromaticity <«

= Chromaticity
changes the nature
of the nature of the
head-taill modes
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= |In absence of synchrobetatron coupling due to the

beam-beam interaction, the modes couple through
their dipolar component

— coupled instabilities are still efficiently mitigated by a
transverse feedback based on the dipolar moment (e.g. ADT)
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@ Effect of synchrobetatron
i

= Head-on collision with
a finite 3* (hourglass)
or a crossing angle
Introduces
synchrobetatron
coupling
= Allows for coupling of

higher order head-tall

modes (possibly without
dipolar component)

= Observed at VEPP-
2000
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@ Effect of synchrobetatron
i

coupling
= Head-on collision with S . ? ERCEUIGE0
a finite p* (hourglass) _ ? ? é é —
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= Head-on collision with ;) —————©=0.2/6=50twrns
a finite 3* (hourglass) * | * _
or a crossing angle
Introduces
synchrobetatron
coupling | | ‘ 5 ;
= Allows for coupling of o

higher order head-tail 04 ~ |

dipolar component) 00605 10 15 20 25 30
= Observed at VEPP- ¢ x 1072

2000

= A feedback based on the dipolar moment is no
longer effective

— Effect of Landau damping needs to be quantified




Baseline

= Thanks to the crab
cavities, the crossing
angle has no impact on
the head-on interaction
- Synchrobetatron
coupling due to the
low 3* (20 cm) Is fairly

weak
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@ Baseline

= Thanks to the crab
cavities, the crossing
angle has no impact on
the head-on interaction
- Synchrobetatron
coupling due to the . y
low * (20 cm) is fairly R
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— The transverse feedback iIs
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00 0.5

3*=0.2 m, full Xing angle 510urad — 12.5 o normalised beam-

beam separation
Without full crabbing scheme, large crossing angles lead to strong

synchrobetatron coupling
— Potential issue with coupled high order head-tail modes has

to be addressed with tracking simulations
= Small crossing angles are favorable for this type of instabilities
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3*=0.2 m, full Xing angle 510prad - 12.5 ¢ normalised beam-
beam separation
Without full crabbing scheme, large crossing angles lead to strong
synchrobetatron coupling
— Potential issue with coupled high order head-tail modes has
to be addressed with tracking simulations
= Small crossing angles are favorable for this type of instabilities
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Without full crabbing scheme, large crossing angles lead to strong
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— Potential issue with coupled high order head-tail modes has
to be addressed with tracking simulations
= Small crossing angles are favorable for this type of instabilities



Long-range coherent beam-

beam modes

LR in IP1 (vertical Xing) LR in IP5 (horizontal Xing)

LR in IP1&5
SymmetrﬁA ‘ g
q)Bl,S-l | |
0.300 0.305 0.310 0.315 0.320
Tune
Anti-
symmetric: |
Lumped long-
range interactions
0.300 0.305 0.310 0.315 0.320
1 bunch train of 3 bunches per beam (PACMAN) Tune

Passive compensation of the tune shift due to long-range interactions for

symmetric configuration

— Broken for the coherent modes in anti-symmetric configurations, but not for the

single particles (i.e. the coherent modes are outside of the incoherent spectrum)



@ Long-range coherent beam-
i

beam modes
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Long-range coherent beam- TN
@ g-rang T,

beam modes
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The opposite is true in the vertical plane

Long-range interactions do not induce synchrobetatron coupling
— the feedback is always effective

Note : The coupled bunch instability is naturally damped at low
separation, since PACMAN bunches are detuned with respect to the
other bunches



Stability diagram during
A

the sgueeze
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= The total detuning coefficient due to the effect of the octupoles and of the
long-range beam-beam interactions only increases during the squeeze with

the baseline parameters



Stability diagram during i

the sgueeze
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Stability diagram during
2 the squeeze

1 x10—=
= Simple model : S el
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The total detuning coefficient due to the effect of the octupoles and of the
long-range beam-beam interactions only increases during the squeeze with

the baseline parameters

= Reducing the crossing angle can lead to a deterioration about the 50cm,

where the squeeze starts
— Start the change of the arc (3 earlier in the presqueeze



Distorted distributions

: o
i RNl DRI 2
Uz —4 —3R ) —1 2 550
e(Q) x 10 ma
Single bunch (Intensity 1.5E11/ emittance 30!
2E-6)
_ 20t
Enhanced impedance (2x)
10|
Chromaticity : 10.0

0 05 10 15 20 25 30

Damper gain : 2E-2 (i.e. 100 turns) Turn <105

Octupole : 120 A required for stability

2E6 macro particles, 100 slices o4



— Amplitude

10~ Linearﬁt(slope3.5-10’10) o N
—  Exponential fit (rate 2.6-107°) | :
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Turn

= 300 A in the octupoles (2.5

time more than required)

= The beams becomes

unstable after a latency

= During the latency, the

diffusion is enhanced in parts
of the action space
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= 300 A in the octupoles (2.5
time more than required)

= The beams becomes
unstable after a latency

= During the latency, the
diffusion is enhanced in parts
of the action space
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Distorted distributions

—  Amplitude -

L R + Large effect in action space
| | = Small effect in real space -

Difficult to measure in the

transverse profiles
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@ Distortion of the distribution due
A to a dynamic aperture restriction
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@ Distortion of the distribution due
A to a dynamic aperture restriction
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Distortion of the distribution due
to a dynamic aperture restriction
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@ Distortion of the distribution due
A to a dynamic aperture restriction

8

o
N
IS
[=)]
[+
=
o
=
N
=
'S
=
o
=

= The stability diagram is evaluated :
based on the distribution obtained after 0 i
10° turns with sixtrack — i.e. including '
diffusion due to non-linearities

Gaussian distribution 6.5 A
SixTrack distribution 6.5 A |
Gaussian distribution 13 A
SixTrack distribution 13 A
Gaussian distribution 26 A ||
SixTrack distribution 26 A

0.8+

= The hole in the distribution lead to a
hole in the stability diagram, possibly
leading to loss of Landau damping
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= Resonances affecting the core can
have a stronger impact on the 00

1
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Reductlon at 1.50 during collapse
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SD strongly reduction for both
polarities of the Landau Octupoles

Larger reduction of SD for positive
Landau octupoles polarity

Positive worst than negative polarity
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A minimum of stability diagram can not
be avoided
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= Areduced crossing angle
Increases the head-on tune
Spread

— Improved stability in adjust
and in collision




Conclusion

= Mode coupling instabllities are well mitigated by the feedback in
absence of synchrobetatron coupling

= Strong synchrobetatron coupling due to head-on collision with a large crossing
angle may lead to coupling instabilities of high order head-tail modes which are
not damped by the feedback — further studies required

— Not an issue in the presence of a full crabbing scheme

= Long-range interactions do not contribute to synchrobetatron coupling — no
Issues expected in the presence of the transverse feedback

= Stability diagrams of head-tail mode are not deteriorated during the
sgueeze, thanks to the increase of the [3 at the octupoles location

= With a reduced crossing angle, the change of 3 could be shifted earlier in the
presqueeze to compensate the increase of the long-range beam-beam forces

= Sufficient DA Is required to ensure that the distribution (and therefore the stability
diagram) is not deteriorated

= Small crossing angles are favourable for Landau damping during adjust
and while colliding due to the larger tune spread from head-on =
Interactions
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