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The circulant matrix model
(BimBim)

 Derive the transverse linearised 
equation of motion for a discretised 
longitudinal distribution, including :

 Chromaticity

 Beam coupling impedance

 Linearised coherent beam-beam forces (6D, in 
arbitrarily complex configurations)

 Transverse feedback

 Analyse the stability of the one turn 
matrix with normal mode analysis

 Neglects Landau damping

x (t ) = MOne turn
t x (0)

= ∑
j

e−2 π iQ j t v j



  

Mode coupling instability 
of colliding beams

 2 head-on interactions 
(6D) with symmetric 
phase advances

 HL-LHC baseline 
parameters but :

β* = 11m, Q' = 0, G = 0

 Coupling instabilities are observed when coherent beam-
beam mode frequencies overlap with head-tail modes

 Observe in dedicated MDs at the LHC
 Landau damping can be modeled in multiparticle 

tracking simluations

1600 turns
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Effect of the 
transverse feedback

 The transverse feedback based on the dipolar moment 
(e.g. ADT) acts efficiently on modes with a dipolar 
component

2/G = 50 turns



  

Effect of chromaticity

 In absence of synchrobetatron coupling due to the 
beam-beam interaction, the modes couple through 
their dipolar component

→ coupled instabilities are still efficiently mitigated by a 
transverse feedback based on the dipolar moment (e.g. ADT) 

 Chromaticity 
changes the nature 
of the nature of the 
head-tail modes

→ modifying their 
coupling through 
beam-beam 
interactions

Q' = 15
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Effect of chromaticity

 In absence of synchrobetatron coupling due to the 
beam-beam interaction, the modes couple through 
their dipolar component

→ coupled instabilities are still efficiently mitigated by a 
transverse feedback based on the dipolar moment (e.g. ADT) 

 Chromaticity 
changes the nature 
of the nature of the 
head-tail modes

→ modifying their 
coupling through 
beam-beam 
interactions
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Effect of synchrobetatron 
coupling

 Head-on collision with 
a finite β* (hourglass) 
or a crossing angle 
introduces 
synchrobetatron 
coupling

 Allows for coupling of 
higher order head-tail 
modes (possibly without 
dipolar component)

 Observed at VEPP-
2000

Q'=0, G = 0
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Effect of synchrobetatron 
coupling

 A feedback based on the dipolar moment is no 
longer effective

→ Effect of Landau damping needs to be quantified

 Head-on collision with 
a finite β* (hourglass) 
or a crossing angle 
introduces 
synchrobetatron 
coupling

 Allows for coupling of 
higher order head-tail 
modes (possibly without 
dipolar component)

 Observed at VEPP-
2000

Q'=0, 2/G = 50 turns



  

Baseline
Q'=0, G = 0

 Thanks to the crab 
cavities, the crossing 
angle has no impact on 
the head-on interaction

→ Synchrobetatron 
coupling due to the 
low β* (20 cm) is fairly 
weak

Hirata's BBC



  

Baseline

→ The transverse feedback is 
effective against the mode coupling 
instabilities (for any positive chromaticity)

 Thanks to the crab 
cavities, the crossing 
angle has no impact on 
the head-on interaction

→ Synchrobetatron 
coupling due to the 
low β* (20 cm) is fairly 
weak

Q'=0, 2/G = 50 turns

Hirata's BBC



  

HL-LHC without crab-cavity

 β*=0.2 m, full Xing angle 510μrad → 12.5 σ normalised beam-
beam separation

 Without full crabbing scheme, large crossing angles lead to strong 
synchrobetatron coupling

→ Potential issue with coupled high order head-tail modes has 
to be addressed with tracking simulations

 Small crossing angles are favorable for this type of instabilities

Q'=0, G = 0
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Long-range coherent beam-
beam modes

 1 bunch train of 3 bunches per beam (PACMAN)

 Passive compensation of the tune shift due to long-range interactions for 
symmetric configuration

→ Broken for the coherent modes in anti-symmetric configurations, but not for the 
single particles (i.e. the coherent modes are outside of the incoherent spectrum)

Symmetric:

Anti-
symmetric:

LR in IP1 (vertical Xing) LR in IP5 (horizontal Xing)
LR in IP1&5

Lumped long-
range interactions



  

Long-range coherent beam-
beam modes

 36b model (long-range 
interactions are not lumped → 
proper modelling of PACMAN 
effect) 

 In the baseline HL-LHC 
optics, the horizontal phase 
advances are close to a 
symmetric configurations

→ weak shift of the coherent 
mode frequencies and therefore 
no mode coupling instabilities



  

Long-range coherent beam-
beam modes

 The opposite is true in the vertical plane

 Long-range interactions do not induce synchrobetatron coupling

→ the feedback is always effective

 Note : The coupled bunch instability is naturally damped at low 
separation, since PACMAN bunches are detuned with respect to the 
other bunches

 36b model (long-range 
interactions are not lumped → 
proper modelling of PACMAN 
effect) 

 In the baseline HL-LHC 
optics, the horizontal phase 
advances are close to a 
symmetric configurations

→ weak shift of the coherent 
mode frequencies and therefore 
no mode coupling instabilities



  

Stability diagram during 
the squeeze

 Simple model :

Qx=Q0, x+a⋅J x+b⋅J y

aLR≈
3
2

N LR⋅ξ

d4 (ξ= r0 N

4π ϵ
, d=√β* γ

ϵ )

 The total detuning coefficient due to the effect of the octupoles and of the 
long-range beam-beam interactions only increases during the squeeze with 
the baseline parameters

 Lattice detuning coefficient 
from MAD-X (sextupoles + 
octupoles at LOF at -550A)
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Stability diagram during 
the squeeze

 Simple model :

Qx=Q0, x+a⋅J x+b⋅J y

aLR≈
3
2

N LR⋅ξ

d4 (ξ= r0 N

4π ϵ
, d=√β* γ

ϵ )

 The total detuning coefficient due to the effect of the octupoles and of the 
long-range beam-beam interactions only increases during the squeeze with 
the baseline parameters

 Reducing the crossing angle can lead to a deterioration about the 50cm, 
where the squeeze starts

→ Start the change of the arc β earlier in the presqueeze

 Lattice detuning coefficient 
from MAD-X (sextupoles + 
octupoles at LOF at -550A)
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Distorted distributions
An example

 Single bunch (Intensity 1.5E11/ emittance 
2E-6)

 Enhanced impedance (2x)

 Chromaticity : 10.0

 Damper gain : 2E-2 (i.e. 100 turns)

 Octupole : 120 A required for stability

 2E6 macro particles, 100 slices
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Distorted distributions
An example

 300 A in the octupoles (2.5 
time more than required)

 The beams becomes 
unstable after a latency

 During the latency, the 
diffusion is enhanced in parts 
of the action space
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Distorted distributions
An example

 Large effect in action space
 Small effect in real space → 

Difficult to measure in the 
transverse profiles
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Distortion of the distribution due 
to a dynamic aperture restriction
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Distortion of the distribution due 
to a dynamic aperture restriction
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Distortion of the distribution due 
to a dynamic aperture restriction

−1
ΔQ x

=∬
0

∞
J x

d Ψ x (J x , J y )

dJ x

Q−qx (J x , J y)−i ϵ
dJ x dJ y
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Distortion of the distribution due 
to a dynamic aperture restriction

 The stability diagram is evaluated 
based on the distribution obtained after 
106 turns with sixtrack → i.e. including 
diffusion due to non-linearities

 The hole in the distribution lead to a 
hole in the stability diagram, possibly 
leading to loss of Landau damping

 Resonances affecting the core can 
have a stronger impact on the 
stability diagram
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 A reduced crossing angle 
increases the head-on tune 
spread

→ Improved stability in adjust 
and in collision 

C. Tambasco, et al, 
@ WP2 meeting 
19.04.2016 
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Conclusion
 Mode coupling instabilities are well mitigated by the feedback in 

absence of synchrobetatron coupling
 Strong synchrobetatron coupling due to head-on collision with a large crossing 

angle may lead to coupling instabilities of high order head-tail modes which are 
not damped by the feedback → further studies required

→ Not an issue in the presence of a full crabbing scheme
 Long-range interactions do not contribute to synchrobetatron coupling → no 

issues expected in the presence of the transverse feedback

 Stability diagrams of head-tail mode are not deteriorated during the 
squeeze, thanks to the increase of the β at the octupoles location

 With a reduced crossing angle, the change of β could be shifted earlier in the 
presqueeze to compensate the increase of the long-range beam-beam forces

 Sufficient DA is required to ensure that the distribution (and therefore the stability 
diagram) is not deteriorated

 Small crossing angles are favourable for Landau damping during adjust 
and while colliding due to the larger tune spread from head-on 
interactions  
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