Intro	du	ctic	n
00			

CO Scan

IX Scan

Experimental activities

Conclusions

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Scaling of DA with beam-beam effects (LR-HO): experience and simulations

Fanouria Antoniou, Stephane Fartoukh, Giovanni Iadarola, Stephania Papadopulou, Yannis Papaphilippou, Dario Pellegrini

WP2, 11 Oct 2016

Introduction	CO Scan	IX Scan	Experimental activities	Conclusions
•0	00000	00000	0000	0

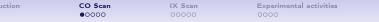
What I will cover:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- First results from simulations on HL-LHC v1.2 optics:
 - DA vs Chromaticity and Octupoles,
 - DA vs Crossing and Intensity.
- Experimental status and foreseen steps.

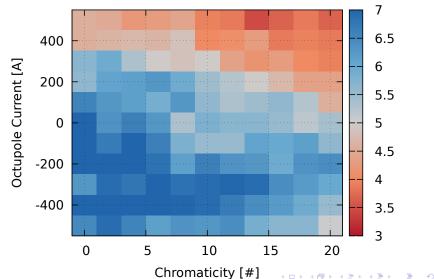
ntroduction	CO Scan	IX Scan	Experimental activities	Conclusions
•	00000	00000	0000	0

Simulation setup


Standard MADX-SixTrack-SixDesk environment:

In

- HL-LHC optics v1.2 with standard beam parameters at the end of levelling (7 TeV, $\beta^* = 20 \text{ cm}$, $\varepsilon = 2.5 \,\mu\text{m}$, $N = 1.275 \times 10^{11}$);
- Beam-Beam in weak-strong approximation (rigid kicks) in all IPs (5 σ separation in IP2);
- Parasitic long-range interactions are taken into account up to the fifth one in the separation dipole (total of 20 per side);
- 6D tracking of 1M turns in the LHC ring.
- Initial longitudinal tracking condition: $(z, \delta)_0 = (0, 0.00027)$
- Dynamic aperture extracted by SixDesk for the standard 5 angles in the xy plane $(15,30,45,60,75)^1$;
- We considered the minimum dynamic aperture over the angles.


Croma and Octupoles scan

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

The Nominal Case, $N = 1.275 \times 10^{11}$

Min DA; HL-LHC v1.2; half xing = 255 μ rad


CO Scan ○●○○○ IX Scan

Experimental activities

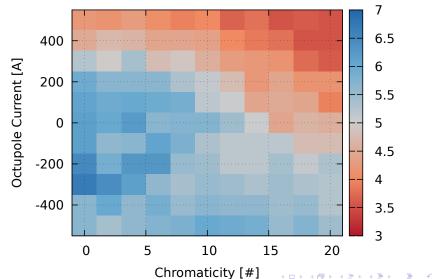
Conclusions

Reducing Crossing (I)

Min DA; HL-LHC v1.2; half xing = 235 μ rad

5/18

ction

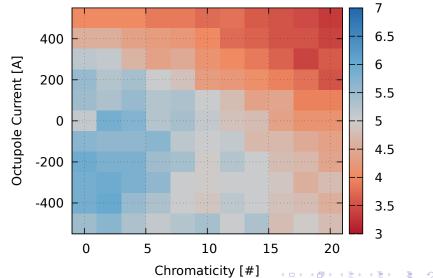

CO Scan ○○●○○ IX Scan

Experimental activities

Conclusions

Reducing Crossing (II)

Min DA; HL-LHC v1.2; half xing = 215 μ rad



6/18

CO Scan OCOOO Reducing Crossing (III)

Min DA; HL-LHC v1.2; half xing = 195 μ rad

Conclusions

Introduction	CO Scan	IX Scan	Experimental activities	Conclusions
00	00000	00000	0000	0
	0		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	

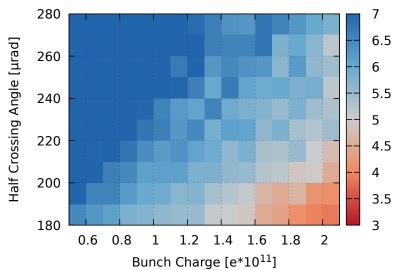
Some observations

- The nominal setting for the crossing looks quite conservative,
- Good DA is maintained when reducing the crossing angle,
- Negative (or moderate) octupoles allow to run with high chromaticity,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• The best DA is obtained for negative octupoles: LR compensation.

Intensity and Crossing Scan


◆□ > ◆□ > ◆三 > ◆三 > 三 のへで

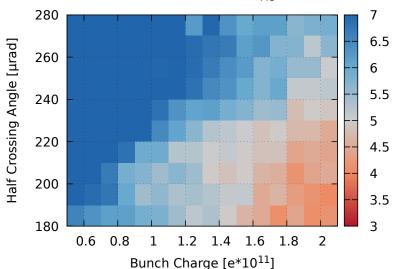
CO Scan IX Scan Experi 00000 00000 0000

Experimental activities

Conclusions

The Nominal Case

Min DA; HL-LHC v1.2; Q' = 3; $I_{MO} = 0$ A


roduction

CO Scan 00000 IX Scan

Experimental activities

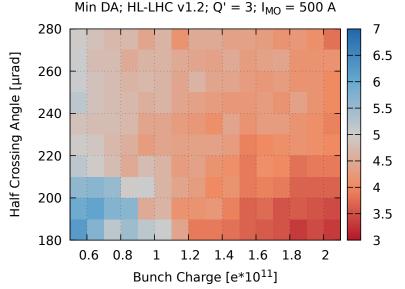
Conclusions

Negative Octupoles

Min DA; HL-LHC v1.2; Q' = 3; I_{MO} = -500 A

10/18

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで


ntroduction

CO Scan 00000 IX Scan

Experimental activities

Conclusions

Positive Octupoles

Introduction	CO Scan	IX Scan	Experimental activities	Conclusions
00	00000	00000	0000	0

Some observations

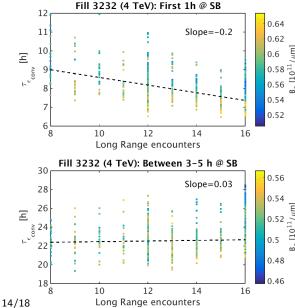
- The I-X scan shows margin as well: can reduce the crossing or increase intensity,
- Negative octupoles make the DA transition sharper: better DA around the nominal working point,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Cannot run with positive octupoles.

Introduction	CO Scan	IX Scan	Experimental activities	Conclusions
00	00000	0000●		O
		Outlook		

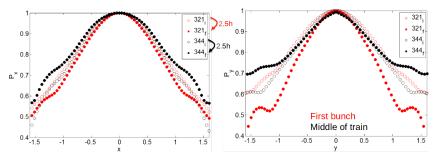
- Improvements to the simulation: errors.
- Explore the levelling alternatives from an incoherent point of view:


<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

- Beta*,
- Separation,
- Crossing.

Experimental status: Work In Progress

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで



- Convoluted emittance growth (extracted from luminosity) vs number of LRs color-coded with brightness.
- Dependence on both number of LRs and brightness for 1st h in SB.
- Dependence on LRs is lost between 3-5 h in SB.
 - Consistent trend over different 2012 fills.
- Need to verify if still present.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Introduction	CO Scan	IX Scan	Experimental activities	Conclusions		
00	00000	00000	0●00	O		
Drofiles from BSPT						

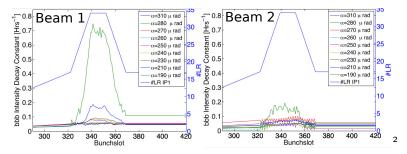
- The first bunch of the train (with less LRs) has less tails after 2.5 h \rightarrow radiation damping?
- The middle bunch of the train (with more LRs) has more tails after 2.5 h \rightarrow diffusion mechanism?

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

Э

• The behaviour is not always consistent for different trains.

uction


CO Scan 00000 IX Scan

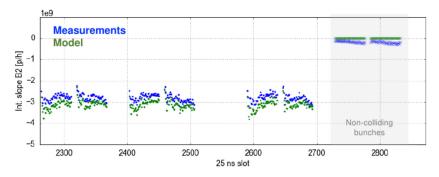
Experimental activities

Conclusions

Asymmetry between the two beams

- Since 2016 B1 has a systematically smaller lifetime in all the conditions, from injection to dump, even with ATS optics!
- B1 showed signatures of LR interactions in the MD while B2 almost did not.

Are we in a weak-strong regime: B1 less bright than B2?


- Can we reproduce the observations in simulation, starting from the measured beam parameters?
- Different phase advances between the two IPs for the two beams, does this have an impact?

16/18 ²T. Pieloni et al.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Is there a multibunch effect?

- More losses are seen for the bunches in the tails of trains (similar trends for the emittance blowup).
- True for both colliding and non-colliding trains: e-cloud? ADT?
- How does this effect couples with beam-beam? Can we disentangle them?
- Can this mask the signatures of LR interactions?

• Progresses are being made with the performance prediction and identification of working point for HL-LHC;

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Initial DA simulations have been performed and results are promising;
- Big efforts are being invested for a better understanding of the LHC.