LHCb Status Report
Julian Wishahi on behalf of the LHCb collaboration
127th LHCC Meeting, 21st of September 2016, CERN

‣ Operations
‣ New Results
‣ Upgrade
Operations
Data taking status

- amazing LHC performance
 - 80% peak efficiency
 - >50% in stable beams

- great LHCb performance
 - all sub-detectors in good shape
 - data accumulation with ≈90% efficiency
 - collected ≈1.3 fb\(^{-1}\) in 2016
 - more \(bb\)-pairs than in 2012 dataset

- working hard to exploit LHC's record-crunching!
 - originally assumed ≈30% efficiency

thanks to the accelerator teams!
Data taking in Run II – Reminder

- trigger w. split HLT and automatic alignment
 - buffer data after HLT1
 - perform alignment
 - HLT2 processes data continuously and asynchronously
- HLT1 and HLT2 run on the same farm
- strategy is working very well
Data taking in Run II – Buffers

- trigger w. split HLT and automatic alignment
 - buffer data after HLT1
 - perform alignment
 - HLT2 processes data continuously and asynchronously
- HLT1 and HLT2 run on the same farm
- strategy is working very well

40 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures
- $450 \text{ kHz} \quad h^\pm$
- $400 \text{ kHz} \quad \mu^\pm/\mu\mu$
- $150 \text{ kHz} \quad e/\gamma$

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers
- $12 \text{ kHz} (700 \text{ MB/s})$ to storage
- $8 \text{ kHz} (530 \text{ MB/s})$
- $4 \text{ kHz} (170 \text{ MB/s})$
- Turbo/Turbo++
LHC efficiency and LHCb HLT

- defined various scenarios depending on LHC efficiency and luminosity increase
- monitor status of buffer disks and speed-up the HLT
- small set of trigger configurations for different LHC setups
 - \(\approx 3\% \) /day of disk occupancy decrease when HLT2 running at max
 - increase originally \(\approx 5\% \) /day, can be adjusted by tightening/loosening trigger requirements

![Graph showing disk usage and start of calendar week](image)

- reduce HLT1 rate
- increase HLT1 rate
Distributed Data Processing in 2016

- increased LHC efficiency also affects CPU/disk and tape needs
 - required adaptation of data processing workflows
 - all offline data processing workflows now operational and backlogs processed
- additional strain due to changes in “Turbo”
 - now also contains reconstruction information
 - reduced offline CPU needs
 - increased disk requirements
- additional disk needs mitigated by
 - reduction of disk replicas
 - data popularity to remove unused datasets
 - parking of 1/3 of the Turbo data on tape
- using resources well above pledges
Preparations for the 2016 pPb run

- LHCb will take part to the pPb run at the end of the year
 - it will represent a big step forward for heavy ion physics at LHCb
 - work ongoing to optimise trigger and event reconstruction
 - we aim to get an integrated luminosity of 20 nb$^{-1}$ at $\sqrt{s_{NN}} = 8$ TeV
 - pPb and Pbp configurations split 50/50

- main physics targets
 - J/ψ, $\psi(2S)$, $\Upsilon(nS)$, and Drell-Yan production
 - study cold nuclear matter effects
 - Z, J/ψ, Υ production to improve nuclear PDFs
 - associated heavy flavour production to study contributions from single and double parton scattering

- details in LHCb-PUB-2016-011
New results
Publication status

- 334 papers submitted
 - +20 papers w.r.t. last LHCC
 - 7 PRL, 5 JHEP, 4 PLB, 2 PRD, 1 EPJC, 1 Nature Physics
- 15 papers in preparation
- 47 analyses under review
Publications since last LHCC

- Probing matter-antimatter asymmetries in beauty baryon decays
- Search for Higgs-like bosons decaying into long-lived exotic particles
- First experimental study of the photon polarization in radiative B_s decays
- Differential branching fraction and angular moments analysis of the decay $B^0 \rightarrow K^+ \pi^- \mu^+ \mu^-$ in the $K^{*0,2}(1430)^0$ region
- Measurement of CP violation in $B^0 \rightarrow D^+ D^-$ decays
- Measurement of the CP-violating phase and decay-width difference in $B_s \rightarrow \psi(2S) \phi$ decays
- Measurement of forward $W \rightarrow ev$ production in pp collisions at $\sqrt{s}=8$ TeV
- Search for the suppressed decays $B^+ \rightarrow K^+ K^+ \pi^-$ and $B^+ \rightarrow \pi^+ \pi^+ K^-$
- Amplitude analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ decays
- Search for structure in the $B_s \pi^\pm$ invariant mass spectrum
Publications since last LHCC (cont.)

- Measurement of the ratio of branching fractions $\text{Br}(B_c \to J/\psi K^+)/\text{Br}(B_c \to J/\psi \pi^+)$
- Measurement of the forward Z boson production cross-section in pp collisions at $\sqrt{s}=13$ TeV
- Observation of $\eta_c(2S) \to pp$ and search for $X(3872) \to pp$ decays
- Measurement of the $B_s \to J/\psi \eta$ lifetime
- Study of B_c decays to the $K^+K^-\pi^+$ final state and evidence for the decay $B_c \to \chi_c^0 \pi^+$
- Amplitude analysis of $B^+ \to J/\psi \varphi K^+$ decays
- Observation of $J/\psi \varphi$ structures consistent with exotic states from amplitude analysis of $B^+ \to J/\psi \varphi K^+$ decays
- Evidence for exotic hadron contributions to $\Lambda_b \to J/\psi p \pi^-$ decays
- Measurements of the S-wave fraction in $B^0 \to K^+ \pi^- \mu^+ \mu^-$ decays and the $B^0 \to K^*(892)^0 \mu^+ \mu^-$
 differential branching fraction
- Measurement of the CP asymmetry in B_s mixing
strategy: measure inclusive $b \rightarrow X_c \mu \nu X$ decays

- right-sign μX_c combinations, $X_c = \{D^0, D^+, D_s, \Lambda_c\}$
 - form a good secondary vertex (SV)
 - do not point back to the primary vertex (PV)
- 2D fit to m and $\ln(IP)$ distribution to identify non-prompt X_c
b-quark production cross-section

- cross-section in LHCb acceptance
 - $\sigma_{bb} = (164.9 \pm 2.3 \pm 14.6) \, \mu b$
 - theory prediction $111^{+51}_{-44} \, \mu b$
 from FONLL [arXiv:1507.06197]

- measured ratio
 - $\sigma_{bb}(13 \, \text{TeV})/\sigma_{bb}(7 \, \text{TeV}) = 2.30 \pm 0.25 \pm 0.19$
 - theory FONLL predicts $1.70^{+0.21}_{-0.15}$
 - tensions at low η
central exclusive production
 - diffractive process, protons remain intact
 - interaction mediated by pomerons
cross-section measurements useful for
 - testing QCD
 - description of pomerons
 - probing the gluon PDF, down to $x = 2 \times 10^{-6}$

first result with the inclusion of HeRSChel!

\[
\sigma_{J/\psi \rightarrow \mu^+ \mu^-} (2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 407 \pm 8 \pm 24 \pm 16 \text{ pb} \\
\sigma_{\psi(2S) \rightarrow \mu^+ \mu^-} (2.0 < \eta_{\mu^+}, \eta_{\mu^-} < 4.5) = 9.4 \pm 0.9 \pm 0.6 \pm 0.4 \text{ pb}
\]
Forward Z boson production at $\sqrt{s}=13$ TeV

- measure $\sigma(Z\rightarrow l^+l^-)$ with $l^\pm = e^\pm, \mu^\pm$
- probe lower Bjorken-x than in Run I
- good agreement
 - between the two final state cross-sections
 - differential cross-section distributions vs. theory

- first step towards further Run II studies
 - great potential for LHCb's electroweak programme
Photon polarisation in $B_s \to \phi \gamma$

- decay-time dependent decay rate

$$\Gamma_{B_s^0 \to \phi \gamma}(t) \propto \exp(-\Gamma_s t) \left[\cosh(\Delta \Gamma_s t/2) - A^\Delta \sinh(\Delta \Gamma_s t/2) \right]$$

- photon polarisation parameter

$$A^\Delta \approx \sin 2\psi \cos \varphi_s$$

- mixing phase

$$\tan \psi \equiv \frac{|A(B_s^0 \to \phi \gamma_R)|}{|A(B_s^0 \to \phi \gamma_L)|}$$

- dominant left-handed polarisation expected

- angular observables in $B^0 \to K^{*0} e^+ e^-$ also sensitive

- well measurable due to large decay width difference

$$\Delta \Gamma_s = 0.083 \pm 0.006 \text{ ps}^{-1}$$

- use $B^0 \to K^{*0} \gamma$ as control channel

- here $\Delta \Gamma_d \approx 0$, thus can determine decay-time related effects

An unbinned simultaneous fit to the decay-time dependent e-amplitudes in B^0 as control channel and $B_s^0 \to \phi \gamma$ is performed to determine the decay rate is conducted to determine the photon polarisation parameter A^Δ.

The result is compatible with $A^\Delta_{\text{SM}} = 0.047^{+0.029}_{-0.025}$, where $\Delta \Gamma_s$ is given by the fraction of “wrongly”-polarized photons and well measurable due to large decay width difference.

More than 4000 signal events are reconstructed. The $B^0 \to \phi \gamma$ decay. The result is compatible with the Standard Model.

Run I

Julian Wishahi for LHCb | LHCb Status Report | 127th LHCC Meeting | September 2016 | CERN
Photon polarisation in $B_s \rightarrow \phi \gamma$

- Experimental challenges
 - $P(t) = [\text{Physics} \times \text{Acceptance}] \otimes \text{Resolution}$
 - resolution from simulations
 - control acceptance by using $B^0 \rightarrow K^*0\gamma$
 - comb. & partially reconstructed backgrounds
 - peaking backgrounds

Run I

LHCb - PAPER-2016-034, arXiv:1609.02032
Photon polarisation in $B_s \to \phi \gamma$

- experimental challenges
 - $P(t) = [\text{Peak} + \text{Comb. & partially reconstructed} + \text{statistically limited}]$
 - resolution
 - control acceptance
 - comb. & partially reconstructed
 - peaking background

result:

$$A^\Delta = -0.98^{+0.46}_{-0.52} + 0.23$$

- first measurement of polarisation in B_s mesons
- consistent with SM expectation within 2σ
- statistically limited
Flavour tagged analyses

- decay-time dependent CP analyses
 - require the knowledge of the initial B production flavour
 - flavour tagging algorithms exploit event information

- recent analyses
 - “Measurement of the CP-violating phase and decay-width difference in $B_s \to \psi(2S)\phi$ decays”
 - tagging power of 3.9%
 - “Measurement of CP violation in $B^0 \to D^+D^-$ decays”
 - precision on CPV significantly improved w.r.t. B factories
 - exploiting new tagging algorithms
 - tagging power of 8.1%!
CP violation in b-baryons

- strategy: use $\Lambda_b \to p\pi^-\pi^+\pi^-$ decays
 - search for CP-violating asymmetries in triple-products of final-state momenta
 - study local CPV as a function of the angle Φ between the $p\pi^-$ and $\pi^+\pi^-$ decay planes

- evidence for CP violation at 3.3σ
- first evidence for CP violation in baryons!
Search for indirect CP violation in D^0 mixing

- decay-time dependent asymmetry in K^+K^- and $\pi^+\pi^-$ final states

$$A_{CP}(t) = \frac{\Gamma(D^0(t) \to f) - \Gamma(\bar{D}^0(t) \to f)}{\Gamma(D^0(t) \to f) + \Gamma(\bar{D}^0(t) \to f)} \approx a_{CP}^{dir} + \frac{t}{\tau_D} a_{CP}^{ind}$$

$$A_\Gamma = -a_{CP}^{ind} \quad A_\Gamma = \frac{\hat{\Gamma}(D^0 \to f) - \hat{\Gamma}(\bar{D}^0 \to f)}{\hat{\Gamma}(D^0 \to f) + \hat{\Gamma}(\bar{D}^0 \to f)}$$

- analyses
 - use initial $D^{*\pm} \to D^0\pi^\pm$ for tagging the production flavour
 - challenge: avoid experimental biases
 - detector and reconstruction asymmetries
 - non-uniform decay-time acceptance
Search for indirect CPV in D^0 mixing

- two independent analyses
 - binned fit [LHCb-CONF-2016-009]
 - perform the analysis in bins of decay time
 - reduces effects from acceptance
 $$A_F = (-0.12 \pm 0.30) \times 10^{-3}$$
 - unbinned fit [LHCb-CONF-2016-010]
 - evaluate per-event decay-time acceptance function
 $$A_F = (-0.07 \pm 0.34) \times 10^{-3}$$
- consistent within 1σ (incl. correlations)
- world's best measurements!
Direct CP violation in D^0 decays

- measure asymmetry of decay rate
 \[A_{\text{raw}}(D^0 \to f) = \frac{N(D^0 \to f) - N(D^0 \to \bar{f})}{N(D^0 \to f) + N(D^0 \to \bar{f})} \]

- expect very small CP violation in the SM
- determine experimental asymmetries from control channels
 \[A_{CP}(D^0 \to KK) = A_{\text{raw}}(D^0 \to KK) - A_{F}(D^{*+}) - A_{D}(\pi^+) \]

- combined results w. previous analyses
 \[A_{CP}^{\text{comb}}(KK) = (0.04 \pm 0.12 \pm 0.10)\% \]
 \[A_{CP}^{\text{comb}}(\pi\pi) = (0.07 \pm 0.14 \pm 0.11)\% \]

no evidence for CPV
Observation of four exotic-like particles

- $X \rightarrow J/\psi \phi$ decays in $B^\pm \rightarrow J/\psi \phi K^\pm$ decays
- “history”
 - CDF observed a narrow structure, $X(4140)$, and hint for another structure, $X(4274)$
 - exotic: narrow and above $D_s D_s$ threshold
 - also seen by D0 and CMS
- new, unique analysis by LHCb
 - first full amplitude analysis (6D likelihood fit)
 - measurement of quantum numbers
 - $X(4140)$ and $X(4274)$ seen (both $J^{PC} = 1^{++}$)
 - $X(4140)$ described as $D_s^* D_s^{*-}$ cusp is preferred by fit
 - 2 additional structures, $X(4500)$ and $X(4700)$ (both $J^{PC} = 0^{++}$)
Search for $K_S \rightarrow \mu^+\mu^-$ decays

- $K_S \rightarrow \mu^+\mu^-$ has not been observed
 - in SM: FCNC transition with additional suppression due to small CPV
 - SM prediction: $BR(K_S \rightarrow \mu^+\mu^-) = (5.0 \pm 1.5) \times 10^{-15}$
 - experimental upper limit $< 11 \times 10^{-9}$ @95% CL

- analysis using 2 fb$^{-1}$ of Run I
 - normalisation channel $K_S \rightarrow \pi^+\pi^-$
 - fit the kaon mass in bins of trigger selection and MVA output

- preliminary upper limit
 \[BR(K_S \rightarrow \mu^+\mu^-) < 6.9 \times 10^{-9} \ @95\% \ CL \]
Publication status

- 334 papers submitted
 - +20 papers w.r.t. last LHCC
 - 7 PRL, 5 JHEP, 1 EPJC, 1 Nature Physics
 - 15 papers in preparation
 - 47 analyses under review

Many more results in preparation, including high precision flavour physics results with Run II
Upgrade
LHCb Upgrade in LS2 – Overview

40 MHz readout
software trigger

VELO
new pixel detector

Upstream Tracker
silicon strips

RICH
new PMTs, readout electronics, optics

SciFi Tracker
scintillating fibres

Muon chambers
more shielding, upgraded readout electronics

Calorimeters
reduced PMT gain, new electronics
LHCb Upgrade in LS2 – Status

- in general a good progress on all subsystems
 - many engineering design and production readiness reviews successfully completed during the summer
 - small delays for some of the milestones

- many detectors entering (pre-)production phase
 - several crucial front-end ASICS successfully submitted and under test
 - VELOPIX for VELO, SALT-128 for Upstream Tracker, CLARO for RICH
 - large component production started
 - delivery of MA-PMTs for RICH started
 - SciFi Tracker fibre delivery on schedule, fibre mat production started

- preparation of LS2 work and worksite organisation is ongoing, profit from EYETS
Conclusion

Peter Jakobs, “Espresso”, CC BY-NC-ND 2.0
Summary & Conclusion

- **LHCb's physics program**
 - lots of new, diverse results over the summer
 - many long-expected results presented, and many more to come!

- **LHCb operation = LHC's superb efficiency + LHCb's flexibility**
 - optimal and dynamic use of resources to maximise the physics output
 - effects on computing are under control in 2016
 - already overtook 2012 data taking in terms of bb-pairs recorded
 - we are preparing for the pPb runs

- **LHCb upgrade is progressing well**
 - huge progress over the past few months
 - working hard to keep up with our milestones