

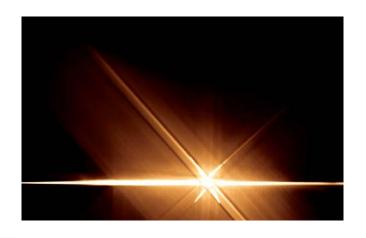
Industrial and Environmental Applications of Electron Accelerators: Prospects and Challenges

Sunil Sabharwal

Department for Nuclear Sciences and Applications

EuCARD-2 Workshop with Industry - 8-9 December 2016 Warsaw, Poland

Greetings from the IAEA



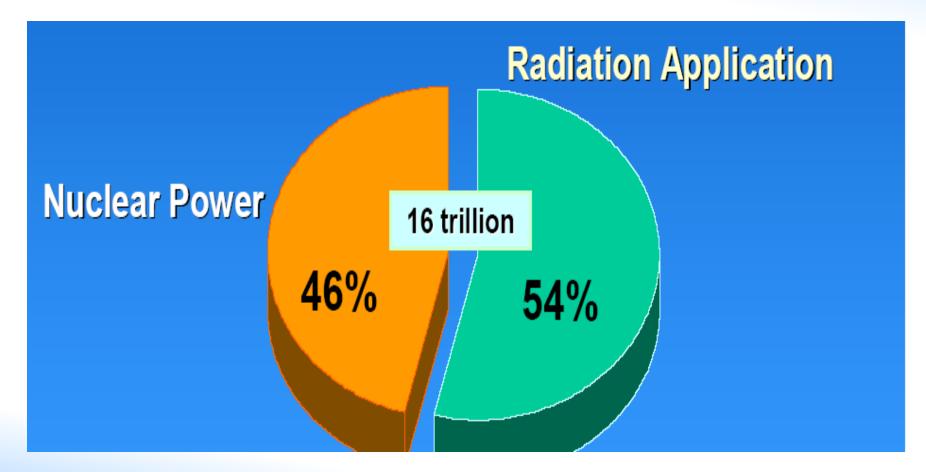
Outline of the presentation

- Scale of economic utilization of radiation technologies
- •What makes them so useful?
- •Why Electron Beams are preferred sources?
- Opportunities and Challenges for the EB technologies
- Role of IAEA

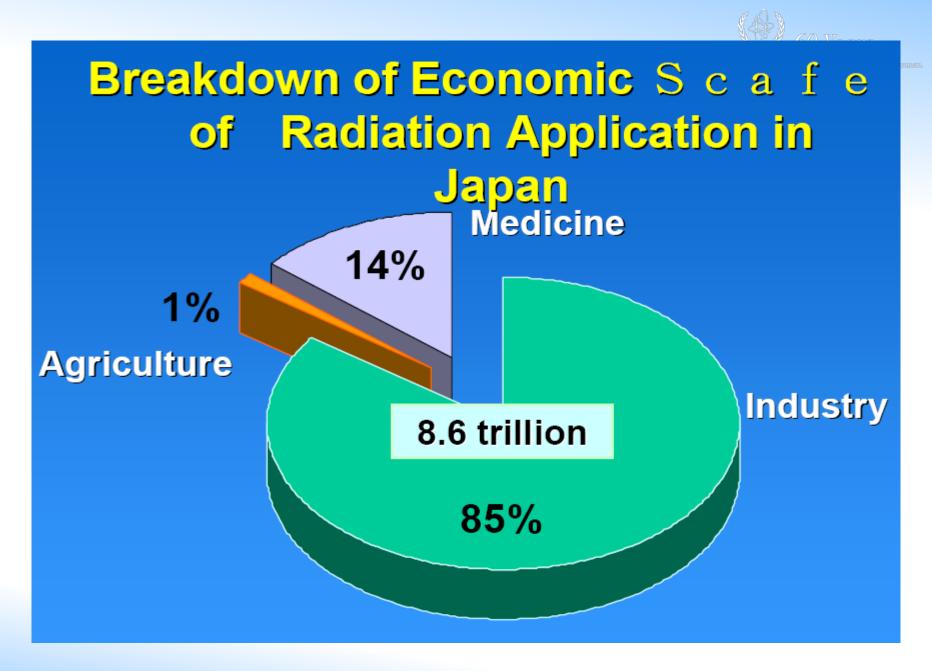
Questions?

Two axes of atomic energy

Providing Abundant Energy, Healthy Life and Clean Environment


Nuclear Power Plants Welfare of Human Beings Economic Development

Radiation Technologies


Atomic Energy

Economic Scale of Nuclear Power and radiation Technology in Japan (1997) 3.2% of the GDP 494 trillion Japanese Yen

J.Nucl.Sci.Tech. 39(2002)1002-1113

Overall Impact of Nuclear Technology in the United States

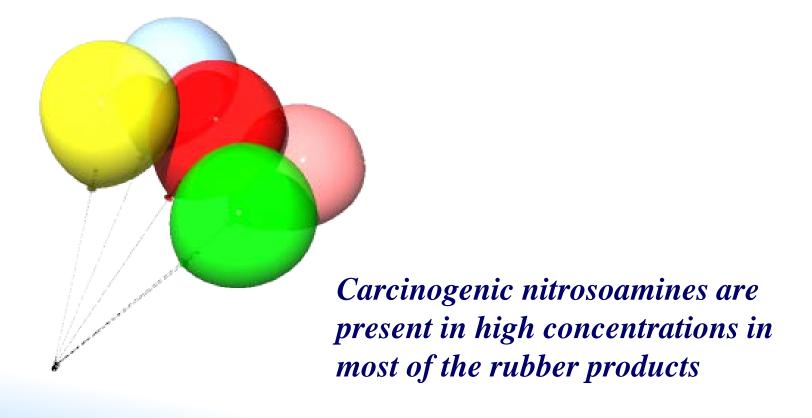
(using multiplication economic model)

	1991		1995	
	Sales(\$B)	Jobs(M)	Sales(\$B)	Jobs(M)
Radiation Technology	257	3.7	331	4.0
Nuclear Power	73	0.4	90	0.4
Total	330	4.1	421	4.4

Reference: Global 2003, November 16-20, 2003

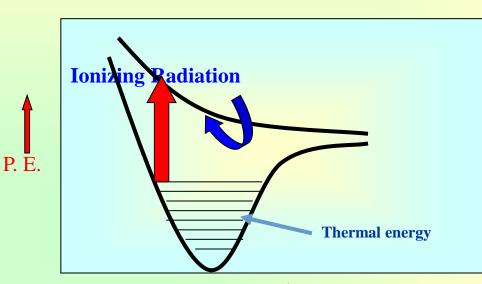
Sustainable Development Goals 16 60 Years

Atoms for Peace and Development


The Golden Rule!

HEAT
BEAT
&
HOPE!!

Conventional curing leaves toxic residues!!



Expectations from new technologies

- Energy Saving
- Must provide superior products
- Environment friendly
- Cost effective
- Public acceptance

How is Radiation Different from Thermal energy?

Thermal energy is very strongly coupled to Translational,
Rotational and Vibrational modes of the energy absorber.
Ionization, bond rupture and other processes leading to chemical reactions occur only in the high energy region of the Maxwellian tail.

Internuclear distance

Ionizing radiation is almost entirely absorbed by the electronic structure of absorbed which increases the energy level of its orbital electrons.

Effective, Efficient generator of reactive Species.

Energy in the form of large quanta can have more pronounced chemical effects than energy in the form of small quanta

Comparison of Energy Input of Thermal and Radiation Vulcanization of Rubbers

Rubber Vulcanization at 80 kGy = 80 J/g

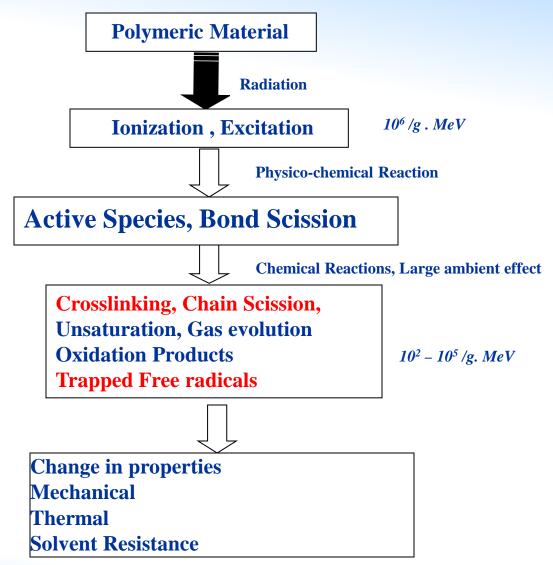
Thermochemical vulcanization of rubber at 150 C to achieve the same crosslinking = 281 J/g

Radiation vulcanization is 3-6 times more energy efficient!

Ref: V.S.Ivanov, Radiation Chemistry of Polymers, Utrecht (1992)

Energy Demand to Dry/Cure Coatings

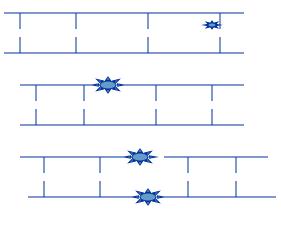
System	Solvent	Solvent	Water	EB cure
Solids	30%	40%	40%	100%
Diluent	heptane	toluene	water	none
Boiling Point,	98 °C	111 °C	100 °C	-
Vapour pressure at 20 °C	35 mm Hg	22 mm Hg	17 mm Hg	-
Heat of vapourization (cal/gm diluent)	76	88	540	-
Energy to dry 1g dried coating	740	555	3390	30 at 30 kGy


What kind of reactions are amiable with radiation processing?

Production rate (kw-hr) = $3.74x10^{-4}G.M.f$ kg where f is efficiency of radiation absorption

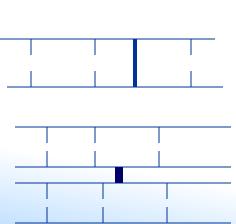
- G-value (yield) of reaction should be very high
- M (mol. wt. of product) should be high
- Small change produced should have very large effect on the properties
- Value addition to the product is very high

Radiation Effects on Polymers in Solid State



Schematic of Radiation Effects on Polymers

Effect of radiation on DNA


Direct effect as well as indirect effect through water radiolysis products

Base Pair damage

Single strand break

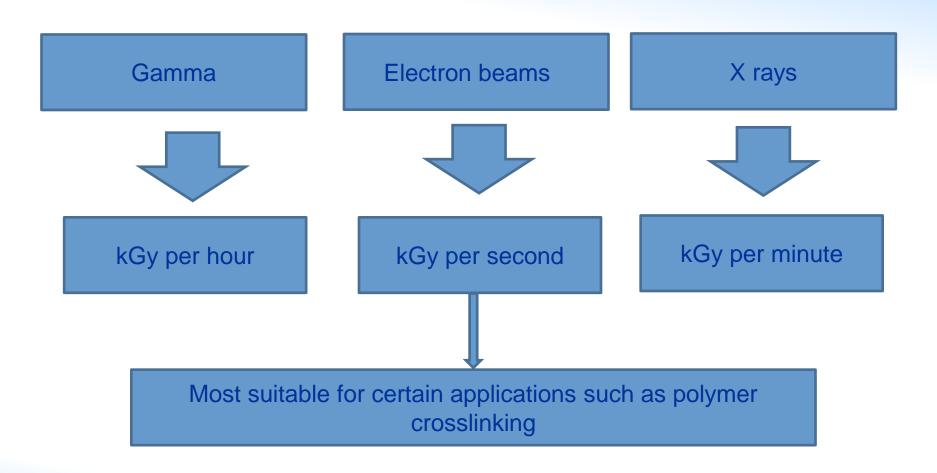
Double strand break

Intra molecular crosslinking

Intermolecular crosslinking

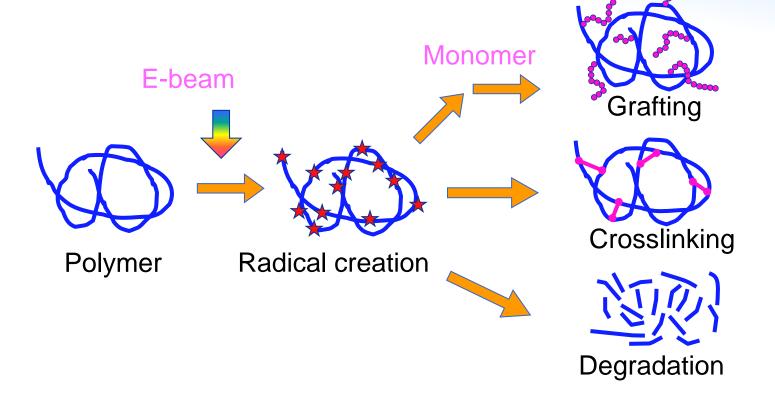
Radiation Chemistry Based Applications

Radiation Biology Based applications



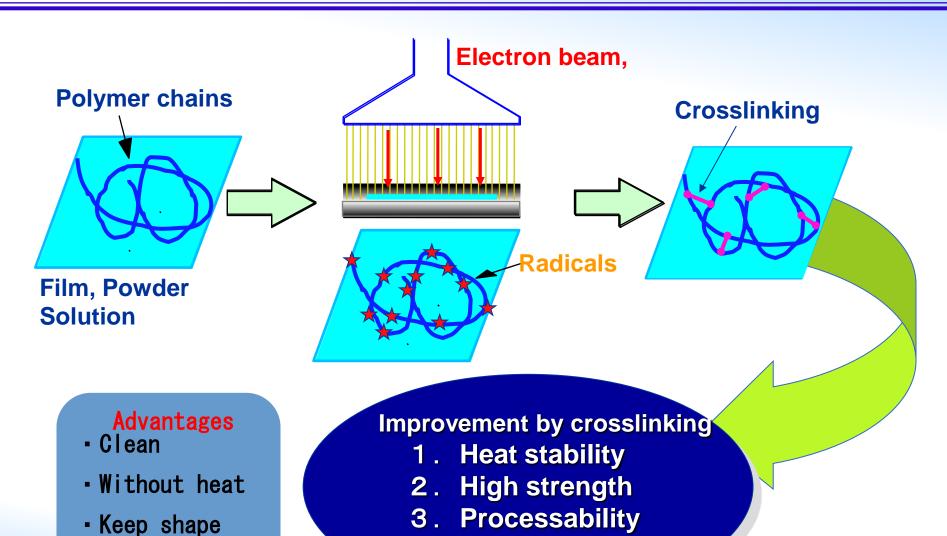
Applications of Radiation Technology

- Crosslinking of polymers
- Degradation of high molecular weight materials
- □• Curing of polymer coatings
- Graft polymerization
- Sterilization of medical products
- lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare lacksquare
- **□•** Sewage Sludge Hygienization


Difference in dose rates

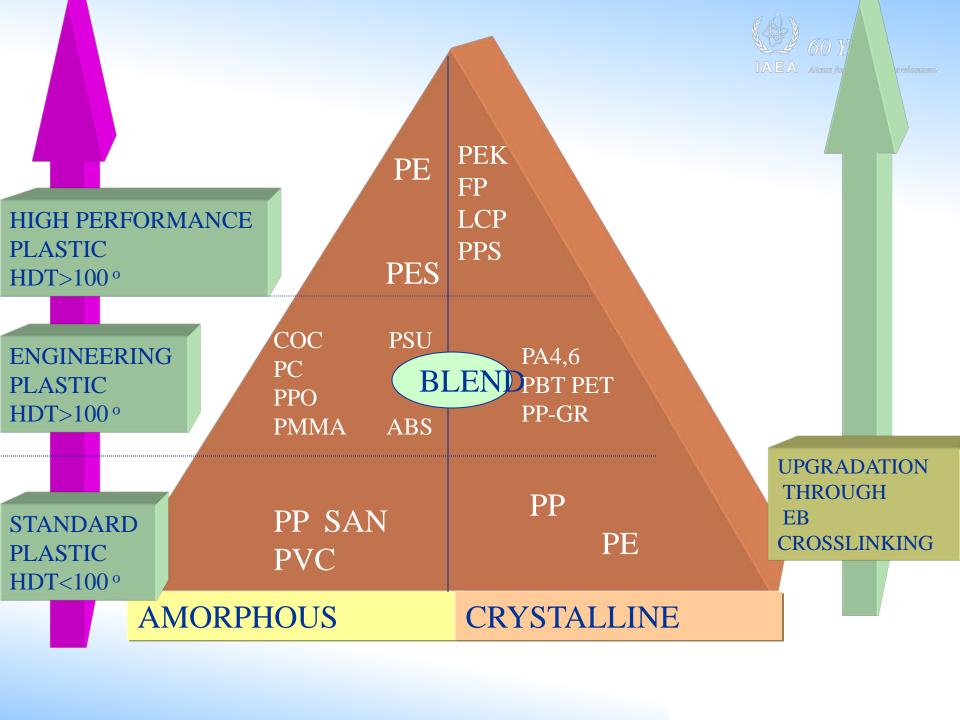
EB processing of polymers

Grafting, crosslinking, and degradation are major reactions in radiation processing of polymer.



- Grafting: Any shapes (membrane, cloth, and fiber)
- Crosslinking: Any states (solid and sticky liquid)
- Degradation: w/o Chemicals

Radiation Crosslinking


High speed

-4- IARP-2009

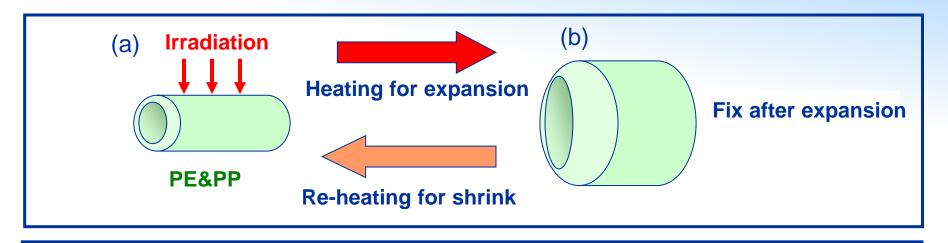
insoluble

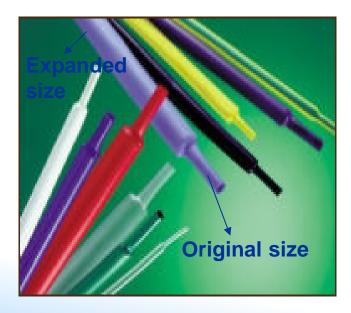
Main Applications for Modified Polymer by Radiation

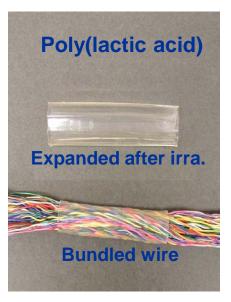
- Wire & cable
- Heat shrinkable material
- Polyethylene foam
- Medical device
- PE packaging film
- Battery membrane
- PTC

Applications of Radiated Wire & Cables

- Automobiles
- Railways
- Aerospace
- Power Industry
- Photovoltaic
- Electronic Appliances



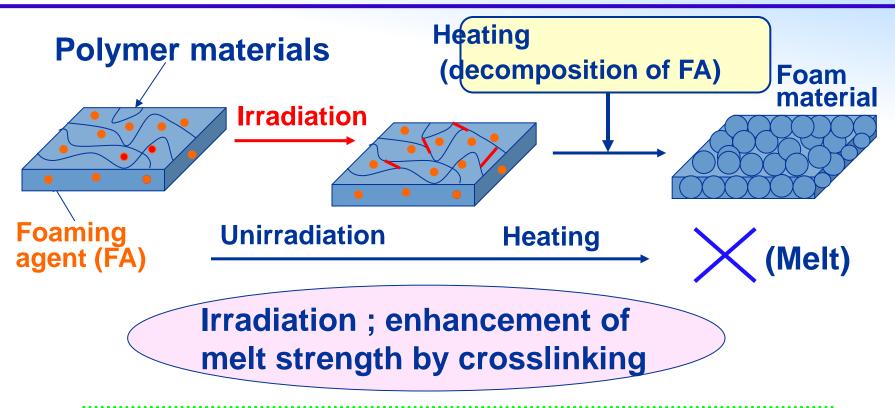



Shrinkable Tubes

Applications for Heat Shrink Material

- Automobile
 - wire harness assemblies/ connectors/ terminals/ electronic components/ wire splices/ hose and pipe...
- Railway/Metro
 - track system (Bogl slabs) and train
- Electronics/Appliance
 - Thin wall tubings

Applications for Heat Shrink Material

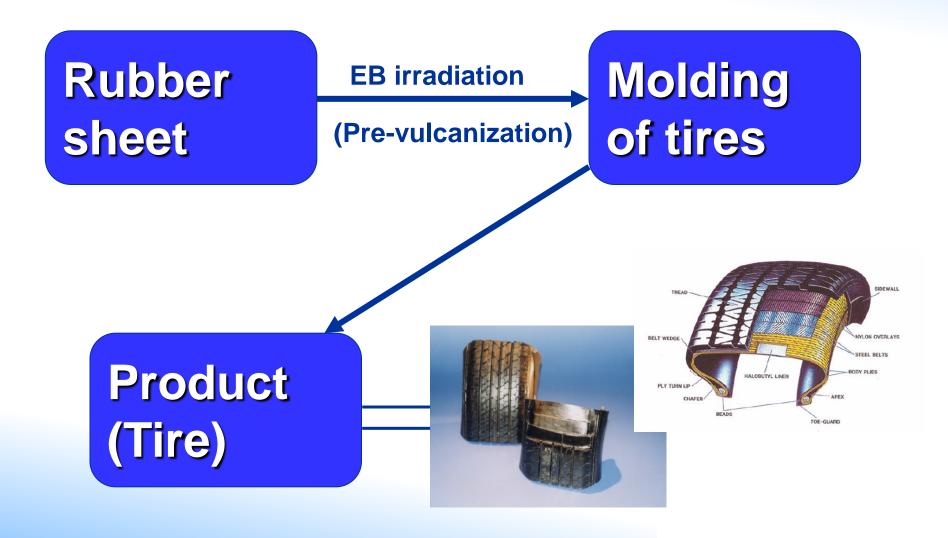


- Power Industry
 - terminations, connectors, end cups, bus bars...
- Oil & Gas
 - heat shrink sleeve for protection of the pipeline joints
 - west-east gas pipeline (1 & 2 line are operational 3rd is about complete and 4th, 5th is planned; Inter-city pipeline networks
 - China-Myanmar, China-Russia, China-Central Asia (Turkmenistan, Kazakhstan and Uzbekistan) + Projects in Africa and Middle East
 - current about 60,000 kms, about another 50,000 kms planned for the next 10 years

Polymer Foam of Car

Applications for PE Foam

- Automobile industry
- Electronics industry
- Packaging industry
- Air conditioning
- Recreation and sports industry



Radiation Processing of Tires and State of Tires an

92% radial tires is processed with EB irradiation

- 1. Radiation Crosslinking of Polymer Materials
- 2. Car Parts Produced by Crosslinking technology
 - Wire and Cable
 - Foam
 - Shrinkable Tube
 - Tire
 - Polyswitch

Electron Beam Crosslinking

Commercial irradiation services being provided for irradiation of diamonds, "O" rings, bushes, heat-shrinkables

New process for irradiation of "O" rings in continuous mode – ease of operation and higher efficiency

Over 10 millions rings processed

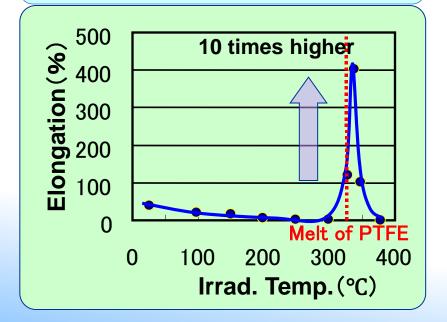
Industrial products for EB processing Dim. Stable Automotive components (partial crosslinking)

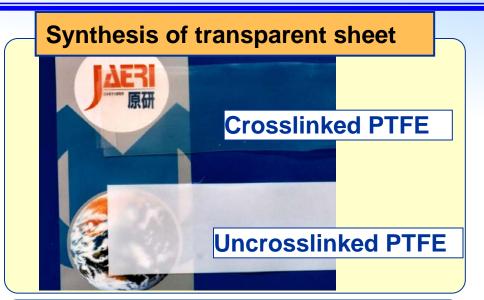
EB crosslinked HDPE

IARP-2009

High Performance PTFE < Crosslinked Product > Crosslinked Product

Production process

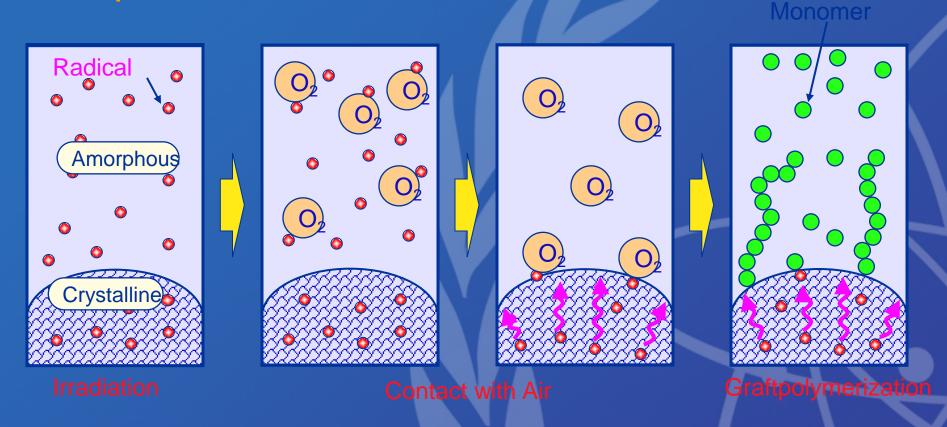

PTFE Powder


EB irrad. at high temp.

Crosslinked PTFE Powder

Moulding-Heat press

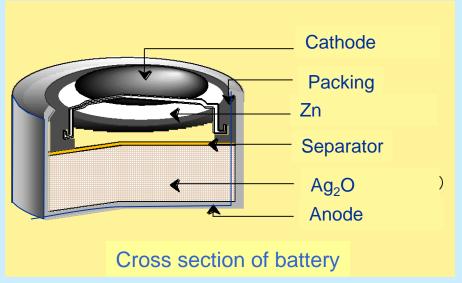
Crosslinked PTFE sheet



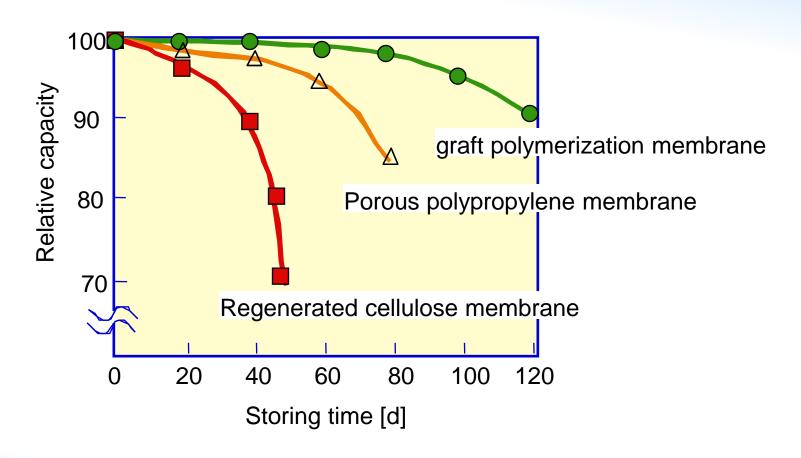
6b/le@banism of graftpolymerization on

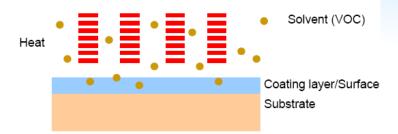
Pre-irradiation method

Grafting is initialed on surface of crystalline part and polymer propagate in amorphous phase.


Important factor for high yield: Radical number and diffusion of monomer

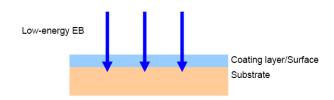
Separator membrane for button-shaped battery


Annual production: 1 billon pieces


Electro conductive membrane synthesized by grafting on polyethylene, 25 µ thick

Various separator membranes in button-shaped battery

Accelerating test for storing battery at 60°C


Thermal drying for Curing

- Well-established process. Solvents required.
- VOC (Volatile Organic Compound) + CO2
- Larger energy (heat sauce) required

Low-energy EB for Curing

- Just gives energy to surface area. No VOCs.
- Smaller size for inline, continuous process.
- High dose rate: high speed process

Comparison of solvent based drying and EB system

		I A L A Alway jor rease and Developmen
System	Solvent	EB Curable
Coating solid conc.	60%	100%
Dried coat wt., g/m2	20 g	20 g
VOCs/m2, sol. Den.0.9	12 g	0 g
Force air system energy demand, kJ/m2	328 kJ	NA
Total EB energy demand, kJ/m2 30kGy at 70% electric input to effective EB	NA	0.86 kJ
Total energy demand (11200 m2/h production)	3,700.000 kJ	9600 kJ
Total energy demand/hr	1030 kWh	2.67 kW/h
Ref: A.J.Berejka, RADTECH (2003)		

EB Lamination

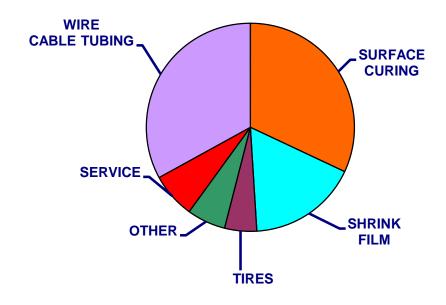
- Paper board + Film
- Instant cure of adhesive
- No aging time
 - Reduce lead time

http://www.packworld.com/>

EB lamination process can be used not only for packaging, but also for industrial materials.

EB Curing Over-coat of Decorative Paper for Furniture and Flooring in Japan

- EB processing has following advantages over UV or thermal curing:
- Higher hardness and scratch resistance
- Higher chemical resistance
- Less energy consumption
- Non-solvent process

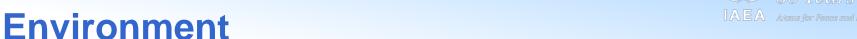

Coating/Laminating Line with an EB System

- EB System (Up to 300kV, 165 cm width)
 - Gravure coaters / Laminators

A GLANCE AT ESTABLISHED EB APPLICATIONS

Radiation Technology Applications 200 Years towards Better Environment

Wastewater Treatment

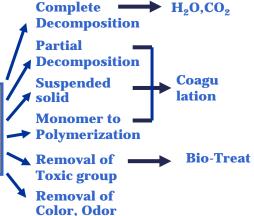


Sludge Hygienization

Radiation Treatment of Flue Gases for Cleaner

- Removal of SO2 and NOx in one step
- By-product is useful fertilizer
- No secondary waste
- Complementary to the CO₂ sequestration
- Fully developed proven technology unit set up in Poland with IAEA assistance.

IAEA projects for technology deployment


Radiation Treatment of Waste Water for Cleaner Environment

- EB facility in Rep. of Korea set up with IAEA cooperation
- Max. flow rate 10,000m³/day
- In combination with the existing Biological Treatment Facility
- Decrease in the chem. Reagents up to 50%
- Efficiency of Biological Treatment improved by 30%
- Decrease in the retention time in Biological Treatment Facility
- Mobile EB facility developed with IAEA cooperation

Hygenization of Bio-solids

Utilization of enriched Hygienized sewage sludge and water for growing grapes in Gujarat in the area where most of land has very low fertility

IAEA INITIATIVES

- Fostering Relevant Development and Dissemination of information, Technology Transfer
 - Coordinated Research Projects
 - Thematic Meetings
 - Collaborating Centres
 - Publication of Technical Reports
 - IAEA Workshops/Schools
 - Support to Conferences/Meetings

IAEA Coordinated Research Projects

 Radiation Treatment of Wastewater for Reuse with Particular Focus on Wastewaters Containing Organic Pollutants (2010-2016)

ALGERIA, BRAZIL, CHINA, EGYPT, MALAYSIA, KOREA, JAPAN, ITALY, HUNGARY, ROMANIA, POLAND, PORTUGAL, TURKEY, USA

Radiation Treatment of Emerging Organic Pollutants (2018- proposed)

Monitoring of antibiotics detected in influent of livestock wastewater treatment plant

Compounds	Concent.	Frequency	
(1 차)	(ng/mL)		
Acetaminophen	62.41~1352.90	5/18 (27.8%)	
Sulfamethoxazole	-	0/18 (0 %)	
Sulfathiazole	105.22~146.45	3/18 (16.7%)	
Sulfamethazine	1.23~58.68	4/18 (22.2%)	
Trimethoprim	-	0/18 (0%)	
Lincomycin	16.09~511.46	11/18 (61.1%)	
Oxytetracycline	728.84~7413.10	12/18 (66.7%)	
Chlortetracycline	420.68~70866.5 0	14/18 (77.8%)	
Acetyl salicylic acid	0.21~294.02	16/18 (88.9%)	
Erythromycin-H ₂ O	-	0/18 (0%)	
Tylosin	0.48~16.20	10/18 (55.6%)	
Formaldehyde	2.78~257.36	17/18 (94.4%)	
Glutaraldehyde	1.13~13.24	10/18 (55.6%)	

Compounds	Concent.	Frequency	
(2 차)	(ng/mL)		
Acetaminophen	7.32~97.7	2/19 (10.5%)	
Sulfamethoxazole	-	0/19 (0%)	
Sulfathiazole	3.86~1082.60	13/19 (68.4%)	
Sulfamethazine	0.40~299.82	9/19 (47.4%)	
Trimethoprim	0.43	1/19 (5.3%)	
Lincomycin	0.50~333.77	13/19 (68.4%)	
Oxytetracycline	515.36~12171.8 9	9/19 (47.4%)	
Chlortetracycline	0.12~34111.47	19/19 (100.0%)	
Acetyl salicylic acid	0.04~690.43	18/19 (94.7%)	
Erythromycin-H2O	-	0/19 (0%)	
Tylosin	0.46~8.03	12/19 (63.2%)	
Formaldehyde	0.70~346.22	18/19 (94.7%)	
Glutaraldehyde	0.75~9.61	15/19 (78.9%)	

Ref: Dr. M. J.Lee, Korea Atomic Energy Research Institute (2014), 3rd IAEA CRP Meeting, Budapest, Hungary

About 180 gamma radiation plants are being used world-over for sterilization of medical products

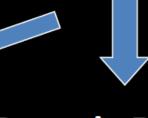
Increasing Use of Electron Beams for Radiation sterilization

Food Irradiation

One Process:

Sprout

Onion, Potato, Ginger, Garlic


Multiple Uses

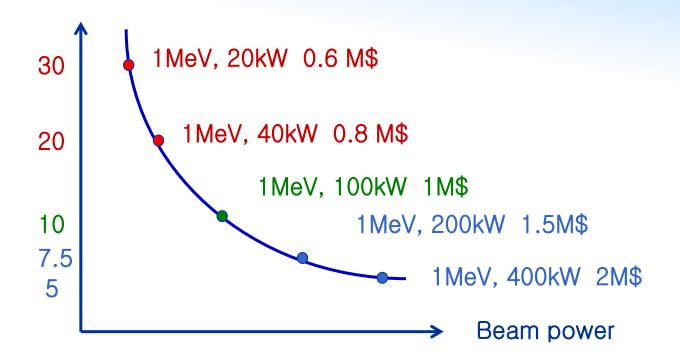
Fruits

Cereals, Pulses, Dry Fruits

Bacteria Reduction Chicken, Meat, Fish

Spices eduction

60 Years


Comparison of gamma with accelerators

	Med. Energy			High Energy	C0-60	Remarks
Energy (max.)	1.0MeV	1.0MeV	2.5MeV	10MeV	1.25MeV*	
Power Source		DC Transformer			Isotope	
Beam Current	100mA	400mA	50mA	1mA	-	
Power (max.)	100kW	400kW	100kW	10kW	1MCi	1MCi≈15kW
Power	125kW	500kW	125kW	110kW		Machine only
Consumption	140kW	650kW	140kW	170kW	10kW	Overall
Energy Efficiency		~80%			-	To beam
Window size (mm)	900~1800	1500~1800 X 3	900~1800	600~800		
Shield Thickness	90Cm	1.0meter	1.8meter	3 meter	3~5 meter	In concrete
Co-60 equivalent	6.7 MCi	27 MCi	6.7 MCi	0.67 MCi	1MCi	1MCi≈15kW
Theoretical	2500kg/min	10,000kg/min	2500kg/min	250kg/min	375kg/min	at 1kGy
Throughput	250kg/min	1,000kg/min	250kg/min	25kg/min	37.5kg/min	at 10kGy
	100kg/min	400kg/min	100kg/min	10kg/min	15kg/min	at 25kGy

Slide Courtesy: Dr. Bumsoo HAN, EB TECH

Cost for unit power (\$/W)

Beam Power	20kW	40kW	100kW	200kW	400kW	1MW
Total Cost (M\$)	0.6	0.8	1.0	1.5	2	2.2*
Unit Cost (\$/W)	30	20	10	7.5	5	2.2

Slide Courtesy: Dr. Bumsoo HAN, EB TECH

Production Cost

		Med. Energy		High Energy	C0-60	Remarks
Energy (max.)	1.0MeV	1.0MeV	2.5MeV	10MeV	1.25MeV*	
Power (max.)	40kW	400kW	100kW	10kW	1MCi	1MCi≈15kW
Initial Investment	1.5M\$	3.0M\$	1.6M\$	2.6M\$	3.6M\$	
Fixed Cost	150k\$	160k\$	160k\$	260k\$	360k\$	
Variable Cost (8,000hr/y)	125k\$	345k\$	125k\$	210k\$	325k\$	
Total	275k\$	505k\$	285k\$	470k\$	685k\$	
Theoretical Throughput	1000kg/min	10,000kg/min	2500kg/min	250kg/min	375kg/min	at 1kGy
	100kg/min	1,000kg/min	250kg/min	25kg/min	37.5kg/min	at 10kGy
	40kg/min	400kg/min	100kg/min	10kg/min	15kg/min	at 25kGy
Production Cost	0.26\$/ton	0.07\$/ton	0.1\$/ton	1.8\$/ton	1.8\$/ton	at 1kGy
(only Variable cost)	2.6\$/ton	0.72\$/ton	1.0\$/ton	18\$/ton	18\$/ton	at 10kGy
	26\$/ton	1.8\$/ton	2.6\$/ton	44\$/ton	45\$/ton	at 25kGy
Production Cost	0.58\$/ton	0.11\$/ton	0.24\$/ton	3.9\$/ton	3.8\$/ton	at 1kGy
(including both)	5.8\$/ton	1.1\$/ton	2.4\$/ton	39\$/ton	38\$/ton	at 10kGy
	14\$/ton	2.6\$/ton	5.9\$/ton	98\$/ton	95\$/ton	at 25kGy

Slide Courtesy: Dr. Bumsoo HAN, EB TECH

Commercial Aspects

- Significant capital investment
 - Electron Beam system is in the range \$1-2.5 M
 - Total Facility Cost may cost \$5 M
 - Amortization of capital investment is a large component of yearly cost
 - Operational cost specially electricity consumption not so high

Breakeven processing price is usually in the range \$ 0.022-0.22 per kg/per kGy

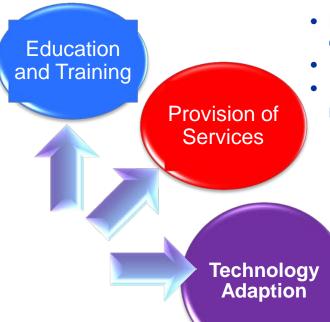
Ref: B.Miller, ISNATT, September 2004

New Developments

High powered machines for X ray generation

5 MeV = 500 kW, X rays @ 8% efficiency = 40 kW Equivalent of about 3 MCi of Cobalt-60

7 MeV= 700 kW, X rays @ 13% efficiency = 91 kW Equivalent of about 6.5 MCi of Cobalt-60


IAEA Serving Member States: How?

- 4 Collaborating Centres
- 5 Coordinated Research Projects per year

- Guidelines; curriculum
- E-learning
- Specialized training

 Dosimetry intercomparison

Training & capacity

building

Technical

backstopping

& services

- Expert missions
- Reference materials

Demand

driven

adaptive

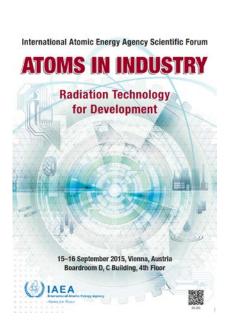
research

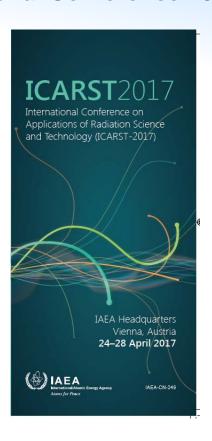
TECHNICAL COOPERATION PROGRAMME

- Setting up radiation facilities
- €39.95 million in 2015 (NA)

What dose IAEA offer? Institutional advantages!

- Global membership (171 MS)and high legitimacy
- Can establish strong collaborations at regional and inter-regional level
- Strong convening power
- Neutrality in assessments and research
- Bottom-up requests to collaborate from partners
- Extensive knowledge networks / centres: academia, private sector, etc.


What does IAEA seek?



Scientific Forum 2015

International Conference 2017

https://www.youtube.com/watch?feature=player_embedded&v=ePiNdzWjoWM

Workshop-TM on Applications of Electron Beam Accelerators 19-23 June 2017, INCT, Warsaw, Poland

Acknowledgements

Dr A.Chmielewski Dr Bumsoo Han Dr Z. Zimek

Thank you!

