Recent developments of eb/X systems and applications based on IMRP 2016 reports

ANDRZEJ G. CHMIELEWSKI

Low energy electron beams for industrial and environmental applications

8-9 December 2016
WUT Centre for Innovation and Technology Transfer Management
Warsaw.Poland

40 YEARS

of collaboration, innovation and education.

Dr. Robert Kephart, Director Illinois Accelerator Research Center (IARC) Fermilab, Batavia, IL (Nov 7, 2016)

Limitations of Current Technology

- Existing high power (100's of kW) industrial electron accelerators are physically large → "fixed" installations
- Bulk materials processing applications may require penetration → higher energy (multi-MeV e or γ)
- > few MeV accelerators are typically RF driven
- Inherent RF losses limit efficiency (heat vs beam)
- Heat removal from the copper limits the duty factor, accelerating gradient (ie size) and average power
- Impractical for <u>high power</u> mobile applications

IBA Dynamitron

IBA Rhodatron

Budker ELV-12

New Technology (developed for science)

Superconducting Radio Frequency (SRF)

- Enables compact high-average power CW accelerators
- Why? Accelerating cavities (resonators) can achieve high gradients (> 30 MV/m) and very high
 - Q_0 = (stored energy)/(energy loss per RF cycle)
- → very large fraction of the input RF power end up as beam power (Wall plug efficiency > 75%)
- The downside: Losses occur at low temperature
 (e.g. 2-4 K) where there the Carnot efficiency is poor.

Recent SRF Technology Breakthroughs:

- High temperature superconductors (Nb₃Sn coatings)
- → high Q_0 at >4K → dramatically lower cryogenic losses
- Conduction Cooling: no Liquid He, simple cryostats
- Cryocoolers: use dramatically simplifies cryogenics
- New RF Power technology: low cost injection locked magnetrons allow phase/amplitude control
- Integrated Electron Gun: reduces size and complexity
- Low Loss RF Power Couplers: reduces cryogenic load

Enable simpler SRF accelerators with lower costs

Ideas integrated into a simple SRF accelerator*

- Energy: ~ 10 MeV
- Power: 250 KW
- Compact
- Simple, reliable
- Affordable
- Modify existing 650 MHz cavity design
- Magnetron RF source & commercial cryo-cooler
- Modular design scales to MW class industrial applications
- Total weight ~3000 lbs → viable for mobile applications

Developing a 250 KW skid mount Version

- Mobile high power accelerators enable new applications
- In-situ cross link and/or environmental applications
- DOE funds for conceptual design & key technologies
- Goal: Create a new class of industrial SRF accelerators!

In-Situ Cross-Link of Pavement*

- Create a tough, strong binder with improved temperature performance vs bitumen to extend pavement lifetime
- U.S. spends \$ 50 B/yr to grind off and replace asphalt!

Conclusions

- Exploiting recent lab breakthroughs one can create simple, high average power, SRF-based accelerators
- The Illinois Accelerator Research Center at Fermilab is partnered with government agencies to create the first article of an entirely new class of <u>industrial</u> accelerators
- Compact, mobile, high energy, high power accelerators can enable a variety of entirely new industrial applications
- Several applications have enormous market potential

40 YEARS

of collaboration, innovation and education.

Presented by:

Scott Goldfarb, Dynamitron Product Manager IBA Industrial, Inc. – Edgewood, New York

Introduction

The Dynamitron[®] is the most popular and widely utilized electron beam accelerator (standard models from 550 Kev @ 160mA to 5 MeV @ 30 mA beam energy) for industrial applications such as crosslinking and vulcanization.

IBA has further improved the Easy-e-Beam® self-shielded version of the Dynamitron® for customer applications with limited manufacturing floor space and to reduce overall facility overhead costs.

Easy-e-Beam® V3 Dynamitron® System

Easy-e-Beam® V3 Dynamitron® System Shown Configured for Crosslinking of Wire/Cable

Improved Ergonomic Design

- Convenient access to Under Beam Handling system
 - Easier/faster string-up
 Easier/faster maintenance
 - Simpler change of guides
- Easier and faster beam window change/maintenance
- Mezzanine provides easier, faster and safer accelerator maintenance

Easy-e-Beam® V3 Beam Room side view for Crosslinking of Wire/Cable

Dual Line Handling

(for wire/cable crosslinking applications)

Depending upon the customers application requirements, version 3 of the Easy-e-Beam® system allows the capability to perform dual line handling and processing to increase efficiency and cost effectiveness.

Dimension for payoff/takeup ref to this datum.

40 YEARS

of collaboration, innovation and education.

Aleksandr Bryazgin Budker Institute Nuclear Physics Novosibirsk, Russia

- Ordinary ILU accelerators.
 - ILU-8 (1 MeV, 20 kW)
 - Design and Main features.
 - Examples in real industry
 - ILU-10 (5 MeV, 50 kW)
 - Design and main features.
 - Examples in real industry
- New multi-cavity ILU accelerators.
 - Reasons for developing
 - Design
 - ILU-14 (10 MeV, 100 kW)
 - ILU-12 (7.5 MeV, 40 kW)

ILU-10 5 MeV 50 kW

- Pulse duration 500 mks
- Pulse repetition 1-50 Hz
- RF frequency 115 MHz
- Dim. D1280x1480 mm

New multi-cavity ILU accelerator.

One cavity

Multi-cavity or multi-pass

New multi-cavity ILU accelerator.

In operation from 2014 in Moscow

Shorter version – ILU-12

- 5 MeV 60 kW
- 7.5 MeV 40 kW
- 4 cavities

Accelerating cell

Possible upgrade to ILU-14

40 YEARS

of collaboration, innovation and education.

Josef Mittendorfer, Consultant, Mediscan

Design Goals for a new E-Beam/X-Ray Irradiator:

- High Dose Accuracy
- Excellent Dose Uniformity
- Allows Narrow Dose Windows
- High Throughput
- Quick Turn Around Just-in-Time Processing Redefined
- Immediate Change between E-Beam/X-Ray Mode
- Competitive Cost

TT-300 "Duo" E-Beam "Workhorse" X-Ray "Special Products"

190 kW Power E-Beam: 10 MeV 19 mA

X-Ray: 7 MeV 27 mA

Fully Automated Depalleting and Palleting

Product Turning

40 YEARS

of collaboration, innovation and education.

In-Line Sterilization of PET Bottles by EB

Vincent Luo, Lu Jieping, Kenneth Hsiao CGN Dasheng Electron Accelerator Technology Co.,Ltd

Aseptic Packaging Technology

- ◆ Sterilization of food materials
- ◆ Aseptic of packaging environment
- ◆ Aseptic of Medium
- Sterilization of packaging materials

Comparison

Hot Fill

- High resin weight packaging required for stability
- Limits products quality
- Energy intensive

Chemical Aseptic

- High operating costs
- Water intensive
- Residual risk
- Preheating and drying
- High complexity

Electron Beam Aseptic

- •Room temperature processing
- No water consumed
- No residual risk
- simplicity

Traditional aseptic filling system

New concept of aseptic filling system

Horizontal Self-Shielding EB Accelerator

- Benefits
 - Simple construction
 - Reliability and Maintainability
 - little area occupied,
 - compaction of equipment
 - higher utilization efficient
 - lower costs

40 YEARS

of collaboration, innovation and education.

Industrial-scale EB for textile wastewater treatment

EB Accelerator

Dynamitron type 1.5 MeV, 60 mA

Industrial-scale EB for textile wastewater treatment

Wastewater reactor

Injector: 1500mm X 4 mm

Exhibition – forecast new Rodothron 10 MeV, 15 kW

Conclusions

- New, more compact accelerators are being developed
- Superconducting technology may improve electrical efficiency
- The new in line systems using low energy accelerators are more often applied at the market
- There is a need for high power accelerators for eb/X systems (5 10 MeV) and environmental applications (< 1 MeV)

THANK YOU FOR YOUR ATTENTION!