

PRESENT STATE AND DEVELOPMENT PROSPECTS OF ACCELERATOR TECHNOLOGY IN RESEARCH AND PRODUCTION ENTERPRISE "TORIY"

Since 1959

ELECTRON ACCELERATORS DEVELOPED AND MANUFACTURED BY RPE "TORIY" AND BE IN SERVICE AS OF 2016 YEAR

	Electron accelerator model name	The operating organization	Country
1	У-003	The Institute of Physical Chemistry and Electrochemistry RAS (IMPB RAS)	Russia
2	У-003	Scientific-research Institute of technical physics and automation	Russia
3	У-003	Institute of nondestructive testing	Russia
4	УЭЛВ-10-10	Moscow Engineering Physics Institute	Russia
5	УЭЛВ-10-10	ZAO «INTEKH»	Russia
6	У-003	Open Joint-Stock Company ELECTROVIPRYAMITEL	Russia
7	У-003	Research Institute of Scientific Instruments (RISI)	Russia
8	УЭЛВ-10-10	"Research and Production Enterprise "TORIY"	Russia
9	УЭЛВ-10-10	"Research and Production Enterprise "TORIY"	Russia
10	УЭЛР-8-2Д	JSC Machine-Building Plant ZiO-Podolsk	Russia
11	УЭЛР-6-2Д	AEM-technology Joint-Stock Company	Russia
12	ЭЛУ-4	Institute of radiation problems	Azerbaijan
13	ЭЛУ-4	Scientific and Practical Materials Research Center	Belarus
14	У-003	Joint Institute of Solid State and Semiconductor	Belarus
15	УЭЛВ-10-10	State Scientific Institution "THE JOINT INSTITUTE FOR POWER AND NUCLEAR RESEARCH - SOSNY"	Belarus
16	У-003	Joint Institute for Nuclear Research	Ukraine
17	У-003	Institute of Nuclear Physics AS RUz	Uzbekistan
18	ЭЛУ-6	Institute of Applied Radiation Chemistry	Poland
19	УЭЛВ-10-10	Institute of Nuclear Chemistry and Technology	Poland
20	УЭЛВ-10-10	Institute of Nuclear Chemistry and Technology	Poland
21	ЭЛУ-6	The National Polytechnic School	Ecuador
22	У-003В	The Leibniz Institute of Surface Modification	Germany
23	УЭЛВ-10-10	Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics	China

LINEAR ACCELERATORS ELU-4, ELU-5-1-5, ELU-6, U-003, UELV-10-10

In 1966 "Toriy" which previously was called "Titan" successfully developed the USSR's first industrial electron accelerator ЭЛУ-4 (ELU-4) with the power of 5 kW and an energy of 5 MeV

In the period from 1964 to the present time, "Toriy" produced about 100 samples of accelerators ELU-4, ELU-5-1-5, ELU-6, U-003, UELV-10-10 for radiation technologies and for sterilization research.

More than 300 samples of MИ-325 (MI-325), MI- 435 and MI-470 magnetrons.

LINEAR ACCELERATOR UELR-10-15 FOR STERILIZATION

Beam Energy, MeV	5 – 10
Electron Beam Average Power, kW	1 – 15
Pulse Repetition Rate, Hz	up to 400
Scan Length, mm	400 - 600
Scan Frequency, Hz	1 – 30
Microwave Tube	Klystron KIU-147A
Modulator	Solid State

LINEAR ACCELERATORS FOR RADIOGRAPHY (NDT)

Parameters	UELR- 6-2D	UELR- 8-2D	UELR- 10-2D
Electron Energy, MeV	3 – 6	3 – 8	5 - 10
Dose Rate, Gy/min	1 – 10	1 – 15	10 – 40
Bremsstrahlung Radiation Field Assymetry, %, not more	5	5	5
Focal Spot Size, mm, not more	1	1	1
Form and Dimension of Operating Field at Distance 2 m,	circle, ø 0,5	circle, ø 0,5	circle, ø 0,5

Parameters	UELR- 6-2D	UELR- 8-2D	UELR- 10-2D
Acceptable non-uniformity of Dose Rate within Operation Field,	10	10	10
Maximum Permissible Duration of Single Exposition, min	not limitation	not limitation	not limitation
Minimal Interval between Expositions, min	1	1	1
Maximum Steel Thickness, mm	50 – 350	50 – 380	100 – 500

X-RAY INSPECTION SYSTEM ST-6035 for vehicles and sea containers

The Russian Border check-point Pogranichny, Vladivostok region

Electron Energy, MeV	6.0 / 3.5
Pulse Repetition Rate, Hz	2 × 200
Total Number of Detectors	2112
Scanning Height, m	up to 4.5
Penetration in Steel, mm	400
Wire Detection without Barrier, mm	Ø 0.8
Contrast Sensitivity, %	0.5

X-RAY INSPECTION SYSTEM ST-2630T for inspection of cargo transported by railway

- High image quality
- Inspection at train speed up to 70 km/h
- Reliable material discrimination
- Subsystem of train cars optical scanning is included

Put into Operation - 2017

Electron Energy, MeV	6.0 / 3.5
Pulse Repetition Rate, Hz	50 to 2000
Pulse Repetition Rate with Material Discrimination,	2×50 to 2×1000
Total Number of Detectors	1440
Scanning Height, mm	8370
Penetration in Steel, not less, mm	350
Wire Detection without Barrier, mm	Ø 1.0
Contrast Sensitivity, not more, %	2.0

MICROWAVE TUBES FOR LINEAR ACCELERATORS

	Magnetron	CW klystron	Pulsed klystrons				
	MI-470	KU-399	KIU-40	KIU-111	KIU-147	KIU-147A	KIU-168
Center frequency, MHz	1885	2450	991	2450	2450	2856	2856
Output pulse power, MW	10	-	4.7	5	5	6	6
Output average/CW power, kW	30	25	70	5	25	25	5
Cathode voltage, kV	50	10	65	50	50	52	52
Number of electron beams	1	18	6		4	0	
Focusing	solenoid	permanent magnets	solenoid	enoid permanent magnets			

MULTIBEAM KLYSTRONS KIU-111, KIU-147, KIU-147A, KIU-168, KIU-271

Klystron Electron Gun

Klystron Cavity Unit

MULTIBEAM KLYSTRON KIU-271 5712 MHz

Center frequency, MHz	5712
Output pulse power, MW	3
Output average power, kW	10
Cathode voltage, kV	45
Number of electron beams	30
Focusing	permanent magnets
Weight, kg	30
Overall dimension, cm	53,8 x 32,5

Model «A»: Anode modulation 45 kV

Model «B»: Grid modulation 15 kV

Cathode Voltage 45 kV

MULTIBEAM KLYSTRON 5712 MHz

- Linear accelerators for nondestructive testing
- •Linear accelerators for X-ray inspection systems
- Linear accelerators for industrial digital radiography Linear accelerators for industrial X-ray analysis
- Linear accelerators for environmental application
- Linear accelerators for sterilization

Klystron testings

ACCELERATING SECTION 5712 MHz

SOLID STATE MODULATOR

Operating voltage, kV	15
Pulse ratio	[10 to 1000]
Pulse length, μs	[5–1000]
Power, W	300

SOLID-STATE SWITCHES ARRAY

RACKMOUNT CHASSIS DESIGN

