

RF Modules Update

MICE Collaboration Meeting 46
Andrew Lambert
Lawrence Berkeley National Laboratory
October 7th, 2016

MICE RF Module

Each MICE RF module has

- One 201 MHz RF cavity
- Two Beryllium windows
- Two RF power couplers
- One vacuum vessel hosting the 201 MHz RF cavity
- Six tuner arms and six actuators
- Cavity support struts
- Vacuum pump system and water cooling
- Diagnostics and bypass lines

Current Status of MICE RF Module

RF Module #1 assembly is near-complete

- Vacuum leak check and vacuum system testing completed
- Installation of actuator mani-folding underway
- RF tuning system tests to be completed mid-October
- Shipping pallet fabrication underway
- Shipping crate procurement underway

RF Module #2 assembly is underway

- Vacuum leak check
- Fiducialize vacuum vessel and RF cavity
- Clean vessel and RF cavity
- RF couplers complete
- Fabrication of "lesson-learned" items underway
 - Refers to flanges, vacuum components and other items that we needed to make/alter for successful module 1 assembly

Tuners and actuators installed

- Six tuners on cavity body for frequency tuning
- Actuators thread into tuner bodies; pressurize bellows "squeezes" or "stretches" the cavity to change the frequency
 - +/- 200 kHz

- Water feedthroughs welded and installed on the cavity
 - Provide cooling water to the RF cavity
 - Leak checked
 - Vacuum checked

- Six strut system holds cavity in the vacuum vessel
 - Laser tracker survey of the vacuum vessel and the RF cavity determine strut length pre-installation
 - Quick installation and alignment
- RF coupler ports aligned
 - High power tested at MTA
 - Successful

- RF module 1 assembly in clean tent on short stand
 - Needs couplers, end plates, production stand

- Couplers installed to the RF cavity and vessel after cleaning
- RF pickup feedthrough port installed at top of the vessel
 - Image at right show pressure relief and nitrogen vent line during vacuum system testing

- Differential pressure box tested - Be window protection
- Tuning system fabrication and installation underway
 - Mounted on support stand plate, rigid manifold with flex line to actuators
- Once tuning tests completed
 - Install Be windows
 - Rotate, tune & mark RF coupler position
 - Package Module 1

Module 1 Vacuum Test

*Special thanks to Terry Anderson of FNAL for his efforts in the vacuum system design and analysis

- Linear regression analysis of the viscous pumpdown (top) and vent (bottom)
 - In each test, the bypass line is closed
 - Conductance through differential pressure box only
 - Check valves crack at < 7.75 torr differential
 - Maximum differential pressure during pumpdown = 4.5 torr
 - Maximum differential pressure during vent = 20.0 torr
 - Exterior vacuum volume of vessel is << than outer vacuum volume at RAL, would expect lower differential during vent at RAL
- Differential pressure box acts as designed and limits differential pressure during pump-down, providing protection against Be window failure
- Closed bypass line simulates minimum conductance between the two volumes

- Module 2 assembly is underway
 - Pre-assembly tasks
 - Vacuum leak check
 - Fiducialize vessel and cavity
 - Clean vessel and cavity
 - Fabrication tasks underway
 - Vacuum bellows weldement
 - Vacuum spool piece flange modification
 - Tuning arm modification
 - Support stand modification
 - Once all pre-assembly and fabrication tasks are complete, module assembly will commence

Schedule

Date	Task
Early October	RF Module 2 pre-assembly begins
Mid October	RF Module 1 low-power RF tuning measurement, coupler tuning
End of October	RF Module 1 is crated, RF Module 2 clean room assembly complete
	RF Module 2 support stand modifications complete, vacuum system fab items complete
Early November	Module 2 re-installed to the support stand
	Vacuum system assembly and testing
	RF system tuning system testing
End of November	RF Module 2 assembly complete
	RF Module 2 is crated
Early December	Ship RF Modules 1 & 2 to RAL

Summary

- RF module #1 assembly complete
- RF module #2 assembly is underway
- Vacuum system testing of RF module 1 is complete, actuator-tuner testing TBC
- LBNL has the necessary resources to complete two RF modules