

MAUS Status

A. Dobbs

Imperial College London

CM46, October 2016

Overview

Release Status

- Current Release
- Infrastructure
- Detector Overview
- Tracker Update
 - Trim coil performance analysis
- Global Reconstruction Update
- Future plans
- Conclusion

Conclusion

Current Release

- Current release: MAUS-v2.6.0
- Highlights:
 - Global reconstruction TRef issue fixed
 - Tracker mappers refactored
 - Tracker Kalman integration tests
 - EpicsInterface, ParticleTrigger and TriggerEngine in datastructure
 - · Logging and exceptions updated
 - Batch cluster running framework added
 - G4Beamline random number fix
 - Geometry corrections downloadable from CDB
- Known issues:
 - Tracker Kalman sometimes produces NaN
 - MC speed still slow

- Output API has not been correctly implemented (does not obey the standard interface IModule) - working to fix
- Reducers do not work with OutputCppRoot
- A data selection mapper is being worked on
- Some third party build scripts need updating
- Want to move to ROOT6 next minor ROOT release should add GCC5 compatibility allowing the move

Detector Overview

- CKOV functional
- TOF Done
 - Except for the trigger MC
- Tracker
 - See later slides
- KL Done
- EMR Done

Tracker

Release Status

- Efficiency, residuals, resolutions looking pretty good
- Helical pattern recognition parameters still to be optimised
- Low level MC needs validating
- Low momentum efficiency drop still to analysed
- No new Kalman champion
- Various analyses needed to support different lattice designs:
 - Reconstruction looks robust when trim fields are removed in Step IV
 - Efficiency looking good when using the no US solenoid descope lattice
- Paper nearly complete, latest draft at: https://github.com/mice-software/scifi-software-paper

Conclusion

Tracker Performance: US Trims vs. No Trims: Conditions

- Geometry based on run 8281
- Muon beam, 233 MeV/c
- Beam started just upstream of TOF1
- 500,000 primaries
- Usual tracker analysis cuts

MAUS Status

Tracker Performance: US Trims vs. No Trims: p residuals

8/14

Tracker Performance: US Trims vs. No Trims: p resol

Tracker Performance: US Trims vs. No Trims: Efficiency

Efficiency 5 point tracks: Trims: **93.44%**, No Trims: **93.26%**Efficiency 3 - 5 point tracks: Trims: **100.0%**, No Trims: **100.0%**

- Global reconstruction code available in MAUS
- Development ongoing not yet production quality, but close
- TrackMatching and PID working
- TRefArray storage issue fixed
- Some performance concerns when using Global as part of standard recon chain
- See J. Greis talk

Global Reconstruction Residuals

- Analyse tracker low momentum efficiency, fix if possible
- Verify low-level tracker MC
- Finish global reconstruction
- Event viewer into online reconstruction
- Data selection mapper
- Speed up MC
- Simulate the trigger
- Complete the Output API
- Upgrade to ROOT6
- Dreams: cmake build system, multi-threaded running, ...

Future Plans

- MAUS is providing reconstructed data, simulation and real, to collaborators for all the MICE detectors
- Many analyses now done using MAUS (see the other talks)
- MAUS is providing live online data reconstruction and visualisation for shifters
- Download: http://heplnv152.pp.rl.ac.uk/maus/

