Emittance reduction in MICE

François Drielsma

University of Geneva

October 5, 2016

1) Emittance definition

The RMS normalised emittance is expressed as

$$\epsilon_n = \frac{1}{m} \sqrt[4]{D} \tag{1}$$

with D the determinant of the covariance matrix defined by

$$D = \det \begin{bmatrix} V_{xx} & V_{xp_x} & V_{xy} & V_{xp_y} \\ V_{p_xx} & V_{p_xp_x} & V_{p_xy} & V_{p_xp_y} \\ V_{yx} & V_{yp_x} & V_{yy} & V_{yp_y} \\ V_{p_yx} & V_{p_yp_x} & V_{p_yy} & V_{p_yp_y} \end{bmatrix} = \sum_{\beta} V_{\alpha\beta} C_{\alpha\beta}, \, \forall \alpha$$
 (2)

with $V_{\alpha\beta}$ the covariance of α and β defined as

$$V_{\alpha\beta} = \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \langle \alpha \rangle)(\beta_i - \langle \beta \rangle) = \langle \alpha\beta \rangle - \langle \alpha \rangle \langle \beta \rangle, \tag{3}$$

and $C_{lphaeta}$ the (lpha,eta)-cofactor of the covariance matrix.

Measurement error propagation

The covariances error correlation can be expressed as a rank-4 tensor,

$$\Sigma^V = A\Sigma A^T,\tag{4}$$

with $\Sigma_{i\alpha\beta j} = \delta_{ij}\delta_{\alpha\beta}\sigma_{\alpha_i}^2$ and A the derivative tensor:

$$A_{\alpha\beta\eta k} = \frac{\partial V_{\alpha\beta}}{\partial \eta_k} = \frac{1}{N} \left[\delta_{\eta\alpha} \left(\beta_k - \langle \beta \rangle \right) + \delta_{\eta\beta} \left(\alpha_k - \langle \alpha \rangle \right) \right]. \tag{5}$$

Inputting equation 5 into equation 4 yields

$$\Sigma_{\alpha\beta\kappa\lambda} = \frac{1}{N^2} \sum_{i=1}^{N} \left[\delta_{\alpha\kappa} \sigma_{\alpha_i}^2 \left(\beta_i - \langle \beta \rangle \right) \left(\lambda_i - \langle \lambda \rangle \right) + \delta_{\alpha\lambda} \sigma_{\alpha_i}^2 \left(\beta_i - \langle \beta \rangle \right) \left(\kappa_i - \langle \kappa \rangle \right) + \delta_{\beta\kappa} \sigma_{\beta_i}^2 \left(\alpha_i - \langle \alpha \rangle \right) \left(\lambda_i - \langle \lambda \rangle \right) + \delta_{\beta\lambda} \sigma_{\beta_i}^2 \left(\alpha_i - \langle \alpha \rangle \right) \left(\kappa_i - \langle \kappa \rangle \right) \right]$$
(6)

Measurement error propagation (2)

This error tensor propagates into the determinant error through

$$\sigma_D^2 = \sum_{\alpha\beta\kappa\lambda} \frac{\partial D}{\partial V_{\alpha\beta}} \Sigma_{\alpha\beta\kappa\lambda}^V \frac{\partial D}{\partial V_{\kappa\lambda}}$$

$$= \frac{4}{N^2} \sum_{i=1}^N \sum_{\alpha\beta} \left[\left(C^T \hat{\sigma}^i C \right)_{\alpha\beta} \left(\alpha_i - \langle \alpha \rangle \right) \left(\beta_i - \langle \beta \rangle \right) \right]$$
 (7)

with $\hat{\sigma}^i_{\alpha\beta}=\delta_{\alpha\beta}\sigma^2_{\alpha_i}$, the diagonal matrix that contains the errors. This eventually yields a measurement error on the emittance of

$$\sigma_{\epsilon_n} = \left| \frac{\partial \epsilon_n}{\partial D} \right| \sigma_D = \frac{D^{-3/4}}{4m} \sigma_D \tag{8}$$

Other quantities of interest

→ 4D transverse beta function:

$$\beta_{\perp} = \frac{V_{xx} + V_{yy}}{2\epsilon}$$
with $\epsilon = \det^{\frac{1}{4}} \begin{bmatrix} V_{xx} & V_{xx'} & V_{xy} & V_{xy'} \\ V_{x'x} & V_{x'x'} & V_{x'y} & V_{x'y'} \\ V_{yx} & V_{yx'} & V_{yy} & V_{yy'} \\ V_{y'x} & V_{y'x'} & V_{y'y} & V_{y'y'} \end{bmatrix}, \quad q' = p_q/p_z$ (9)

→ Mean total momentum:

$$|\vec{p}| = \sqrt{p_x^2 + p_y^2 + p_z^2} \tag{10}$$

 \rightarrow Transmission in the cooling channel

$$T_i = \frac{N_i}{N_0} \tag{11}$$

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩

2.1) 200 MeV/c **solenoid**: 8 config. under investigation

 \circ Two solenoid modes 200 MeV/c magnet settings (from A. Liu):

	$ECE_U[\%]$	$M2_U$	$M1_U$	FC	$M1_D$	$M2_D$	$ECE_D\left[\%\right]$
$w/M2_D$	0.72	219.8	162.7	55.9	0	205.66	0.51
$w/o\;M2_D$	0.76	236.8	135.2	56	0	0	0.54

- o 3 mm and 6 mm input normalised emittance
- With or without absorber (65 mm of LiH in this study)

Geometries

In first approximation, a simplified geometry was used

- \rightarrow Two trackers in, 5 stations/tracker, 3 planes/station, full geometry
- → A simple 65 mm-thick, 225 mm in radius cylinder of LiH (or not)
- \rightarrow Field maps generated in MAUS from the cooling channel currents
- → Fixed emittance input beam at 13800 m (just before TKUS5)
- \rightarrow No momentum spread in the beam

The simulations were also run with the full MAUS geometry and the same input beam, it did not have any significant effect on the measurements.

6mm, M2-on, LiH (300 mm fiducial+through)

6mm, M2-on, LiH (150 mm fiducial+through)

Summary of all $200 \,\mathrm{MeV}/c$ solenoid configurations

•	,	•			
M2 OI	V	M2 OFF			
3 mm, LiH	Thru	3 mm, LiH	Thru		
$\Delta \epsilon_n^{4D}$	+1.68%	$\Delta\epsilon_n^{4D}$	+2.14%		
$\Delta p \left[MeV/c ight]$	-12.73	$\Delta p \left[MeV/c ight]$	-12.72		
Trans.[%]	97	Trans.[%]	94		
6 mm, LiH	Thru	6 mm, LiH	Thru		
$\Delta \epsilon_n^{4D}$	-3.69%	$\Delta \epsilon_n^{4D}$	-4.87%		
$\Delta p\left[MeV/c ight]$	-12.76	$\Delta p \left[MeV/c ight]$	-12.74		
Trans.[%]	85	Trans.[%]	77		
3 mm, empty	Thru	3 mm, empty	Thru		
$\Delta \epsilon_n^{4D}$	+0.11%	$\Delta\epsilon_n^{4D}$	+0.28%		
$\Delta p \left[MeV/c ight]$	-0.19	$\Delta p \left[MeV/c ight]$	-0.19		
Trans. $[\%]$	98	Trans. $[\%]$	96.		
6 mm, empty	Thru	6 mm, empty	Thru		
$\Delta \epsilon_n^{4D}$	+0.03%	$\Delta\epsilon_n^{4D}$	-0.13%		
$\Delta p \left[MeV/c ight]$	-0.20	$\Delta p \left[MeV/c ight]$	-0.20		
Trans [%]	86	Trans [%]	October 5, 2016	10 /	

François Drielsma (UniGe)

Emittance reduction in the $M2_D$ on configurations

October 5, 2016

Emittance reduction in the $M2_D$ off configurations

October 5, 2016

2.2) 200 MeV/c flip: 8 config. under investigation

 \circ Flip modes 200 MeV/c magnet settings (from A. Liu):

	$ECE_U[\%]$	$M2_U$	$M1_U$	FC	$M1_D$	$M2_D$	$ECE_D\left[\%\right]$
$M2_D$	0.68	150.40	253.18	±222.94	0	-244	-0.5
$M2_D$	0.89	153.19	251.15	±224.99	0	0	-0.5

- 3 mm and 6 mm input normalised emittance
- With absorber (65 mm of LiH in this study)

Summary of all 200 MeV/c flip configurations

Recon.

+0.53%

M2 ON

Thru

-2.75%

3 mm, LiH

$\Delta p\left[MeV/c ight]$	-12.77	-14.36	$\Delta p \left[MeV/c ight] $	-12.76	-13.14	
Trans.[%]	99.00	100	Trans.[%]	90.59	100	
6 mm, LiH	Thru	Recon.	6 mm, LiH	Thru	Recon.	
$\Delta\epsilon_n^{4D}$	-4.20%	-1.65%	$\Delta \epsilon_n^{4D}$	-6.03%	-1.69%	
$\Delta p \left[MeV/c ight]$	-12.83	-13.64	$\Delta p \left[MeV/c ight]$	-12.84	-13.20	
Trans.[%]	91.21	100	Trans.[%]	71.77	100	
3 mm, empty	Thru	Recon.	3 mm, empty	Thru	Recon.	
$\Delta \epsilon_n^{4D}$	+0.85%	+3.34%	$\Delta\epsilon_n^{4D}$	+0.93%	+7.39%	
$\Delta p \left[MeV/c ight]$	-0.19	-1.73	$\Delta p \left[MeV/c ight]$	-0.20	-0.67	
Trans. $[\%]$	98.75	100	Trans.[%] 87.95		100	
6 mm, empty	Thru	Recon.	6 mm, empty	Thru	Recon.	
$\Delta \epsilon_n^{4D}$	+1.28%	+3.36%	$\Delta \epsilon_n^{4D}$	+0.74%	+4.20%	
$\Delta p \left[MeV/c ight]$	-0.20	-1.10	$\Delta p \left[MeV/c ight]$	-0.20	-0.47	
Trans [%]	89.80	100	Trans [%]	67.55		
François Drielsma (UniGe)		Emittance a	nd cooling	October	5, 2016 14 / 31	

M2 OFF

Thru

-3.57%

Recon.

+4.02%

3 mm, LiH

 $\Delta \epsilon_n^{4D}$

2.3) 140 MeV/c: 4 configurations under investigation

 \circ Flip and solenoid modes 140 MeV/c magnet settings (from A. Liu):

	$ECE_U[\%]$	$M2_U$	$M1_U$	FC	$M1_D$	$M2_D$	$ECE_D\left[\% ight]$
Sol.	0.65	172.39	242.20	56.15	0	0	0.57
Flip	0.71	80.0	158.14	± 172.05	0	0	-0.56

- o 3 mm and 6 mm input normalised emittance reduction
- With absorber (65 mm of LiH in this study)

Summary of all $140 \,\mathrm{MeV}/c$ configurations

S	olenoid		Flip			
3 mm	Thru	Recon.	3 mm	Thru	Recon.	
$\Delta \epsilon_n^{4D}$	+1.11%	+9.98%	$\Delta \epsilon_n^{4D}$	-9.89%	-0.26%	
$\Delta p \left[MeV/c ight]$	-17.84	-16.76	$\Delta p \left[MeV/c ight]$	-17.86	-16.22	
Trans.[%]	89.03	69.75	Trans. $[\%]$	91.45	69.12	
6 mm	Thru	Recon.	6 mm	Thru	Recon.	
$\Delta \epsilon_n^{4D}$	-11.54%	-2.88%	$\Delta \epsilon_n^{4D}$	-14.26%	-5.49%	
$\Delta p \left[MeV/c ight]$	-17.93	-16.39	$\Delta p \left[MeV/c ight]$	-18.03	-16.37	
Trans.[%]	65.76	58.18	Trans.[%]	65.86	52.22	

- ightarrow Solenoid mode has a defocus at the absorber, poor cooling
- \rightarrow Flip mode has a tight focus
- ightarrow Very poor transmission at 6 mm, should maybe try to optimize the input emittance, M2 would also help...
- \rightarrow Strong bias from scraping, but seems to be real cooling in flip mode

Main sources of bias on the emittance

1 Poor transmission: scraping gives a seemingly reduced emittance

2 Reconstruction inefficiencies: The reconstruction produces a seemingly higher emittance due to the poor low p_T efficiency

3) Toy MC of the scraping bias

To simplify, take the input beam to be an uncorrelated 2D Normal:

$$x_i \sim \mathcal{N}(0, \sigma_x^2)$$
 $p_{x,i} \sim \mathcal{N}(0, \sigma_{p_x}^2)$ $V_i = \begin{bmatrix} \sigma_x^2 & 0\\ 0 & \sigma_{p_x}^2 \end{bmatrix}$ (12)

- $\rightarrow \epsilon_i = \sqrt{\det V}/m$
- ightarrow With the same uncorrelated dist. of y: $\epsilon_n^{4D} = \epsilon_i$
 - Fully deterministic energy loss using the BB formula:

$$-\frac{dE}{dx} = \frac{k_1}{\beta^2} (\ln(k_2 \beta^2 \gamma^2) - \beta^2)$$
(13)

- o Normal scattering: $\mathcal{N}(0,\,\theta_0^2)$
- The output distributions read:

$$x_o \sim \mathcal{N}(0,\,\sigma_x^2) \quad p_{x,o} \sim \mathcal{N}(0,\,p_o^2(\frac{\sigma_{p_x}^2}{p_i^2} + \theta_0^2)) \quad V_o = \begin{bmatrix} \sigma_x^2 & 0 \\ 0 & p_o^2(\frac{\sigma_{p_x}^2}{p_i^2} + \theta_0^2) \end{bmatrix}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Effect of a drift on the distribution

The effect of a drift of Δz on the covariance matrix is a transfer matrix:

$$V_{p} = MV_{o}M^{T} \qquad M = \begin{bmatrix} 1 & \Delta z/p_{o} \\ 0 & 1 \end{bmatrix}$$

$$\rightarrow V_{p} = \begin{bmatrix} \sigma_{x}^{2} + \sigma_{p_{x,o}}^{2} \Delta z^{2}/p_{o}^{2} & \sigma_{p_{x,o}}^{2} \Delta z/p_{o} \\ \sigma_{p_{x,o}}^{2} \Delta z/p_{o} & \sigma_{p_{x,o}}^{2} \end{bmatrix} \quad \det V_{p} = \det V_{o}$$

$$(14)$$

In terms of distribution this is equivalent to a correlated 2D gaussian:

$$f_{x_p p_{x,p}}(x,p) = \frac{1}{2\pi\sigma_x \sigma_{p_{x,o}}} \exp\left[-\frac{(x - (p/p_o)\Delta z)^2}{2\sigma_x^2}\right] \exp\left[-\frac{p^2}{2\sigma_{p_{x,o}}^2}\right]$$
(15)

Scraping after a drift

If we produce a radial cut, this is equivalent to cutting the edges in x:

$$f(x,p) = \frac{\Gamma}{2\pi\sigma_x\sigma_{p_{x,o}}} \exp\left[-\frac{(x - (p/p_o)\Delta z)^2}{2\sigma_x^2}\right] \exp\left[-\frac{p^2}{2\sigma_{p_{x,o}}^2}\right] \chi_{[-x_L,x_L]}(x)$$

If we operate the variable change $\xi = x - p\Delta z/p_o$, we get:

$$f(x,p) = \frac{\Gamma}{2\pi\sigma_x\sigma_{p_{x,o}}} \exp\left[-\frac{\xi^2}{2\sigma_x^2}\right] \exp\left[-\frac{p^2}{2\sigma_{p_{x,o}}^2}\right] \chi_{[-x_L + \frac{p}{p_o}\Delta z, x_L + \frac{p}{p_o}\Delta z]}(x)$$

Emittance change of a sampled drifted distribution

Toy MC settings:

- \circ 200 MeV/c muons, no p spread
- o 6 mm input normalized emittance ϵ_n
- \circ 200 mm β function at the absorber, $(V_{xx} \simeq 600 \, \mathrm{mm})$
- No correlation in the input

Results:

- Transmission drops as the drift length increases
- A loss in transmission causes a loss in high amplitude scatters first, hence the bias on the emittance change

October 5, 2016

4) MICE Cooling Demo: SSD-less descope lattice

- EMR for DS momentum, tracker planes give x', y;
- Flip mode 200,MeV/c magnet settings (from the CD baseline);
- One primary (65 mm) and two secondary (32.5 mm) LiH abs.
- → Cooling? Transmission? Bias?

On-axis longitudinal magnetic field B

Beam envelope in the descope lattice

4D transverse beta function

RMS emittance 3-6 mm

4D normalised RMS emittance

4D normalised RMS emittance

Transmission in a 150 mm cylinder (tracker dimensions)

Transmission in a 300 mm cylinder (TOF2 dimensions)

RMS emittance, no fiducial, 3-6 mm

5) Momentum spread, deal with non-linearities

Single particle emittance

Instead of focusing on the single figure of the RMS emittance, one can look at individual particle amplitudes

$$\epsilon_i = \epsilon_n u_i^T \Sigma u_i \quad \text{with} \quad u_i^T = \begin{pmatrix} x_i & p_{x,i} & y_i & p_{y,i} \end{pmatrix}$$
 (16)

with ϵ_n the RMS emittance and u_i the phase-space vector.

ightarrow One can build fractional samples and calculate the volume occupied by a more central subset of particles (remove tail effects)

Alternative figures of merit of cooling

The RMS emittance is strongly prone to bias due to non linearities. There are alternative ways to quantify the phase volume

KDE based

- Place a kernel at each point, gives the probability density function everywhere
- Compute a contour

Tessellation of the space

- Use extended Voronoi paving to weight the points in terms of density
- ► Compute volume

Conclusions and looking ahead

Observations on the bias in MICE CC simulations

- ightarrow Simulations at 200 MeV/c sol/flip and 140 MeV/c flip showed strong emittance reduction bias correlated with transmission
- \rightarrow Some Step IV settings see **true cooling** (w/ no fiducial)
- \rightarrow Without M1, **M2 helps** to manage transmission greatly E.g. 6 mm-200 MeV/c flip: 91.21% with and 71.77% without
- Toy of the the effect of scraping on a drift in 2D:
 - ightarrow The propagation of particles in the CC introduces $x-p_x$ correlation and hence preferential scraping of high scatter angle particles

Bias in the SSD-less MICE descope option:

- \rightarrow Beam envelope grows very quickly after the DS secondary absorber, current baseline gives > 90 % transmission up to 6 mm input
- ightarrow True cooling to be observed, manageable bias

Alternative cooling figures of merit being looked into, more to come...