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1) Emittance definition

The RMS normalised emittance is expressed as

εn =
1

m

4√
D (1)

with D the determinant of the covariance matrix defined by

D = det


Vxx Vxpx Vxy Vxpy
Vpxx Vpxpx Vpxy Vpxpy
Vyx Vypx Vyy Vypy
Vpyx Vpypx Vpyy Vpypy

 =
∑
β

VαβCαβ, ∀α (2)

with Vαβ the covariance of α and β defined as

Vαβ =
1

N

N∑
i=1

(αi − 〈α〉)(βi − 〈β〉) = 〈αβ〉 − 〈α〉〈β〉, (3)

and Cαβ the (α, β)-cofactor of the covariance matrix.
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Measurement error propagation

The covariances error correlation can be expressed as a rank-4 tensor,

ΣV = AΣAT , (4)

with Σiαβj = δijδαβσ
2
αi

and A the derivative tensor:

Aαβηk =
∂Vαβ
∂ηk

=
1

N
[δηα (βk − 〈β〉) + δηβ (αk − 〈α〉)] . (5)

Inputting equation 5 into equation 4 yields

Σαβκλ =
1

N2

N∑
i=1

[
δακσ

2
αi

(βi − 〈β〉) (λi − 〈λ〉)

+δαλσ
2
αi

(βi − 〈β〉) (κi − 〈κ〉)
+δβκσ

2
βi

(αi − 〈α〉) (λi − 〈λ〉)
+δβλσ

2
βi

(αi − 〈α〉) (κi − 〈κ〉)
]

(6)
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Measurement error propagation (2)

This error tensor propagates into the determinant error through

σ2
D =

∑
αβκλ

∂D

∂Vαβ
ΣV
αβκλ

∂D

∂Vκλ

=
4

N2

N∑
i=1

∑
αβ

[(
CT σ̂iC

)
αβ

(αi − 〈α〉) (βi − 〈β〉)
]

(7)

with σ̂iαβ = δαβσ
2
αi

, the diagonal matrix that contains the errors. This
eventually yields a measurement error on the emittance of

σεn =

∣∣∣∣∂εn∂D

∣∣∣∣σD =
D−3/4

4m
σD (8)
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Other quantities of interest

→ 4D transverse beta function:

β⊥ =
Vxx + Vyy

2ε

with ε = det
1
4


Vxx Vxx′ Vxy Vxy′

Vx′x Vx′x′ Vx′y Vx′y′

Vyx Vyx′ Vyy Vyy′

Vy′x Vy′x′ Vy′y Vy′y′

 , q′ = pq/pz

(9)

→ Mean total momentum:

|~p| =
√
p2
x + p2

y + p2
z (10)

→ Transmission in the cooling channel

Ti =
Ni

N0
(11)
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2.1) 200 MeV/c solenoid: 8 config. under investigation

◦ Two solenoid modes 200 MeV/c magnet settings (from A. Liu):

ECEU [%] M2U M1U FC M1D M2D ECED [%]

w/ M2D 0.72 219.8 162.7 55.9 0 205.66 0.51
w/o M2D 0.76 236.8 135.2 56 0 0 0.54

◦ 3 mm and 6 mm input normalised emittance

◦ With or without absorber (65 mm of LiH in this study)
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Geometries

In first approximation, a simplified geometry was used

→ Two trackers in, 5 stations/tracker, 3 planes/station, full geometry

→ A simple 65 mm-thick, 225 mm in radius cylinder of LiH (or not)

→ Field maps generated in MAUS from the cooling channel currents

→ Fixed emittance input beam at 13800 m (just before TKUS5)

→ No momentum spread in the beam

The simulations were also run with the full MAUS geometry and the same
input beam, it did not have any significant effect on the measurements.
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6mm, M2-on, LiH (300 mm fiducial+through)
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6mm, M2-on, LiH (150 mm fiducial+through)
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Summary of all 200 MeV/c solenoid configurations

M2 ON M2 OFF
3 mm, LiH Thru

∆ε4Dn +1.68%
∆p [MeV/c] -12.73

Trans.[%] 97

3 mm, LiH Thru
∆ε4Dn +2.14%

∆p [MeV/c] -12.72
Trans.[%] 94

6 mm, LiH Thru
∆ε4Dn -3.69%

∆p [MeV/c] -12.76
Trans.[%] 85

6 mm, LiH Thru
∆ε4Dn -4.87%

∆p [MeV/c] -12.74
Trans.[%] 77

3 mm, empty Thru
∆ε4Dn +0.11%

∆p [MeV/c] -0.19
Trans.[%] 98

3 mm, empty Thru
∆ε4Dn +0.28%

∆p [MeV/c] -0.19
Trans.[%] 96.

6 mm, empty Thru
∆ε4Dn +0.03%

∆p [MeV/c] -0.20
Trans.[%] 86

6 mm, empty Thru
∆ε4Dn -0.13%

∆p [MeV/c] -0.20
Trans.[%] 78
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Emittance reduction in the M2D on configurations

3 mm 6 mm

∅

LiH

François Drielsma (UniGe) Emittance and cooling October 5, 2016 11 / 31



Emittance reduction in the M2D off configurations

3 mm 6 mm

∅

LiH
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2.2) 200 MeV/c flip: 8 config. under investigation

◦ Flip modes 200 MeV/c magnet settings (from A. Liu):

ECEU [%] M2U M1U FC M1D M2D ECED [%]

M2D 0.68 150.40 253.18 ±222.94 0 -244 -0.5
6M2D 0.89 153.19 251.15 ±224.99 0 0 -0.5

◦ 3 mm and 6 mm input normalised emittance

◦ With absorber (65 mm of LiH in this study)
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Summary of all 200 MeV/c flip configurations

M2 ON M2 OFF
3 mm, LiH Thru Recon.

∆ε4Dn -2.75% +0.53%
∆p [MeV/c] -12.77 -14.36

Trans.[%] 99.00 100

3 mm, LiH Thru Recon.

∆ε4Dn -3.57% +4.02%
∆p [MeV/c] -12.76 -13.14

Trans.[%] 90.59 100

6 mm, LiH Thru Recon.

∆ε4Dn -4.20% -1.65%
∆p [MeV/c] -12.83 -13.64

Trans.[%] 91.21 100

6 mm, LiH Thru Recon.

∆ε4Dn -6.03% -1.69%
∆p [MeV/c] -12.84 -13.20

Trans.[%] 71.77 100

3 mm, empty Thru Recon.

∆ε4Dn +0.85% +3.34%
∆p [MeV/c] -0.19 -1.73

Trans.[%] 98.75 100

3 mm, empty Thru Recon.

∆ε4Dn +0.93% +7.39%
∆p [MeV/c] -0.20 -0.67

Trans.[%] 87.95 100

6 mm, empty Thru Recon.

∆ε4Dn +1.28% +3.36%
∆p [MeV/c] -0.20 -1.10

Trans.[%] 89.80 100

6 mm, empty Thru Recon.

∆ε4Dn +0.74% +4.20%
∆p [MeV/c] -0.20 -0.47

Trans.[%] 67.55 100
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2.3) 140 MeV/c: 4 configurations under investigation

◦ Flip and solenoid modes 140 MeV/c magnet settings (from A. Liu):

ECEU [%] M2U M1U FC M1D M2D ECED [%]

Sol. 0.65 172.39 242.20 56.15 0 0 0.57
Flip 0.71 80.0 158.14 ±172.05 0 0 -0.56

◦ 3 mm and 6 mm input normalised emittance reduction

◦ With absorber (65 mm of LiH in this study)
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Summary of all 140 MeV/c configurations

Solenoid Flip

3 mm Thru Recon.

∆ε4Dn +1.11% +9.98%
∆p [MeV/c] -17.84 -16.76

Trans.[%] 89.03 69.75

3 mm Thru Recon.

∆ε4Dn -9.89% -0.26%
∆p [MeV/c] -17.86 -16.22

Trans.[%] 91.45 69.12

6 mm Thru Recon.

∆ε4Dn -11.54% -2.88%
∆p [MeV/c] -17.93 -16.39

Trans.[%] 65.76 58.18

6 mm Thru Recon.

∆ε4Dn -14.26% -5.49%
∆p [MeV/c] -18.03 -16.37

Trans.[%] 65.86 52.22

→ Solenoid mode has a defocus at the absorber, poor cooling

→ Flip mode has a tight focus

→ Very poor transmission at 6 mm, should maybe try to optimize the
input emittance, M2 would also help...

→ Strong bias from scraping, but seems to be real cooling in flip mode
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Main sources of bias on the emittance

1 Poor transmission: scraping gives a seemingly reduced emittance

2 Reconstruction inefficiencies: The reconstruction produces a
seemingly higher emittance due to the poor low pT efficiency
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3) Toy MC of the scraping bias

◦ To simplify, take the input beam to be an uncorrelated 2D Normal:

xi ∼ N (0, σ2
x) px,i ∼ N (0, σ2

px) Vi =

[
σ2
x 0

0 σ2
px

]
(12)

→ εi =
√

detV /m
→ With the same uncorrelated dist. of y: ε4Dn = εi

◦ Fully deterministic energy loss using the BB formula:

−dE
dx

=
k1

β2
(ln(k2β

2γ2)− β2) (13)

◦ Normal scattering: N (0, θ2
0)

◦ The output distributions read:

xo ∼ N (0, σ2
x) px,o ∼ N (0, p2

o(
σ2
px

p2
i

+ θ2
0)) Vo =

[
σ2
x 0

0 p2
o(
σ2
px

p2i
+ θ2

0)

]
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Effect of a drift on the distribution

The effect of a drift of ∆z on the covariance matrix is a transfer matrix:

Vp = MVoM
T M =

[
1 ∆z/po
0 1

]
→ Vp =

[
σ2
x + σ2

px,o∆z2/p2
o σ2

px,o∆z/po
σ2
px,o∆z/po σ2

px,o

]
detVp = detVo

(14)

In terms of distribution this is equivalent to a correlated 2D gaussian:

fxppx,p(x, p) =
1

2πσxσpx,o
exp

[
−(x− (p/po)∆z)

2

2σ2
x

]
exp

[
− p2

2σ2
px,o

]
(15)

x

px

x

px
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Scraping after a drift

If we produce a radial cut, this is equivalent to cutting the edges in x:

f(x, p) =
Γ

2πσxσpx,o
exp

[
−(x− (p/po)∆z)

2

2σ2
x

]
exp

[
− p2

2σ2
px,o

]
χ[−xL,xL](x)

If we operate the variable change ξ = x− p∆z/po, we get:

f(x, p) =
Γ

2πσxσpx,o
exp

[
− ξ2

2σ2
x

]
exp

[
− p2

2σ2
px,o

]
χ[−xL+ p

po
∆z,xL+ p

po
∆z](x)

x

px

x

px
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Emittance change of a sampled drifted distribution
Toy MC settings:

◦ 200 MeV/c muons, no p spread

◦ 6 mm input normalized
emittance εn

◦ 200 mm β function at the
absorber, (Vxx ' 600 mm)

◦ No correlation in the input

Results:

◦ Transmission drops as the drift
length increases

◦ A loss in transmission causes a
loss in high amplitude scatters
first, hence the bias on the
emittance change
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4) MICE Cooling Demo: SSD-less descope lattice

◦ EMR for DS momentum,
tracker planes give x’, y;

◦ Flip mode 200,MeV/c magnet
settings (from the CD baseline);

◦ One primary (65 mm) and two
secondary (32.5 mm) LiH abs.

→ Cooling? Transmission? Bias?
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Beam envelope in the descope lattice
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RMS emittance 3–6 mm
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Transmission in a 150 mm cylinder (tracker dimensions)
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Transmission in a 300 mm cylinder (TOF2 dimensions)
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RMS emittance, no fiducial, 3–6 mm
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5) Momentum spread, deal with non-linearities
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Single particle emittance

Instead of focusing on the single figure of the RMS emittance, one can
look at individual particle amplitudes

εi = εnu
T
i Σui with uTi =

(
xi px,i yi py,i

)
(16)

with εn the RMS emittance and ui the phase-space vector.
→ One can build fractional samples and calculate the volume occupied by
a more central subset of particles (remove tail effects)
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Alternative figures of merit of cooling

The RMS emittance is strongly prone to bias due to non linearities. There
are alternative ways to quantify the phase volume

◦ KDE based
I Place a kernel at each point,

gives the probability density
function everywhere

I Compute a contour

◦ Tessellation of the space
I Use extended Voronoi paving

to weight the points in terms
of density

I Compute volume
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Conclusions and looking ahead

Observations on the bias in MICE CC simulations

→ Simulations at 200 MeV/c sol/flip and 140 MeV/c flip showed strong
emittance reduction bias correlated with transmission

→ Some Step IV settings see true cooling (w/ no fiducial)

→ Without M1, M2 helps to manage transmission greatly

E.g. 6 mm–200 MeV/c flip: 91.21% with and 71.77% without

Toy of the the effect of scraping on a drift in 2D:

→ The propagation of particles in the CC introduces x− px correlation
and hence preferential scraping of high scatter angle particles

Bias in the SSD-less MICE descope option:

→ Beam envelope grows very quickly after the DS secondary absorber,
current baseline gives > 90 % transmission up to 6 mm input

→ True cooling to be observed, manageable bias

Alternative cooling figures of merit being looked into, more to come...
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