

Status of the MICE RF System

The MICE RF team

Headline update

Distribution network

- Components assembled into distribution network at DL
- Components delivered to RAL from DL for installation
- Adapted from components procured under NSF-MRI for earlier configuration

Status of RF drive system

- Upgraded triode modulator No.1 operational at Daresbury
- Triode No. 2 under test, started mid March
 - Exploiting 1st tetrode, and upgraded No. 1 modulator racks
 - Triode achieved 1MW using ex-ISIS valve (close to limit of valve)
 - Modulator/RF glitches noted when tetrode > 50kW into triode
- Interface channels for RF controls defined
- LLRF system demonstrated on ISIS debuncher

Muon-RF phase determination

- Subsample method with Fourier domain signal reconstruction
- Accurately rebuilding signals from MTA experiments
- Digitisation hardware has been delivered
- RF discriminator delivered, currently under test at Strathclyde

Work Needed for Cooling Demo

Distribution network

- Installation, calibration
- Gas insulation scheme needs to be built
- Adjustment of relative phase

RF drive system

- Resolution of the glitches issue on the test stand at Daresbury on Triode No 2
- Completion of controls system- do we need such a 'hands off' system?
- Installation in Hall and commissioning- provision of cooling water and controls cabling
- LLRF system modified for MICE

Muon-RF phase determination

- Completion of testing of principles/hardware of both methods
- Integration of two distinct methods
- Integration with experiment DAQ/Analysis

Cavities

- Provision of auxiliary systems for cavities (cooling/air/vacuum)
- Installation, integration with controls/monitoring/LLRF
- Online commissioning

MICE: Muon-RF Timing

Alex Dick and Kevin Ronald

- Need to be able to select particles for analysis by their RF transit phase
 - Allows the 'bundling' of particles for coherent analysis
 - i.e. As if we are considering the interactions of a real particle 'bunch'
- Cavity transit time inferred by the ToF transit time and the tracker measurement of momentum
 - Combining ToF resolution and Momentum projection resolution ~ +/- 51.5ps
 - Desire to know RF phase to better than 0.3 of this ~ 17ps
- Two Approaches
 - Digitisation (subsampled) of the RF waveform on the pickup probes
 - Direct recording of the wave inside the cavity
 - TDC recording of the RF waveform
 - Records zero crossings of a reference oscillator/Cavity waveform provides RF phase reference for TDC particle events

- Time domain: signal (blue) from FNAL cavity tests - 500µs window sampled at 5G.Sa/sec
- Subsample (red) at 12.5M.Sa/sec, reduce data by x400, and 48x < Nyquist @ 200MHz
- Note time domain signal 'windowed': New data from MTA will remove this process
- Freq. domain: Red fft of entire recorded data,
 Blue enhanced dft of subsampled data

- Freq. domain reconstructions: high fidelity to raw signal over entire pulse duration (no spark)
- Blue is original data through 1MHz Butterworth filter, Red is reconstructed subsample data
- Note dft is effectively a (hard edged) 100kHz filter
- 10ps precision achieved on arbitrary pulses from MTA test- various dft widths analysed
- Further test on additional MTA data in different conditions also look promising

- Signals on slide 14 had to be artificially windowed to zero at start/end of record
- New data provided by MTA used long record length
 - Note different pulse envelope form
- Processed in same way here as previous data
- ~ 12ps variation achieved

- Digitiser is in hand: CAEN V1760 VME unit
- Will need to synchronise digitiser trigger with TDC's TRST signal- discussion with CAEN suggests several routes

- TDC approach originally proposed by Paul Smith
- Idea is to use as much of the digitising electronics as used for the ToF's
- Problem is the discriminator (LeCroy 4415) is ~ 9MHz part
- Note impedance presented at 200 MHz differs from spec (100 Ω)
- Impedance matching could be implemented, but rate issue will remain
 - Probably LeCroy 4415 cannot operate faster than 30MHz

9

- Hardware for TDC method now available
- 4 Ch. 300 MHz leading edge discriminator (Philips 704D) on test at Strathclyde
- Impedance matched at 200 MHz

- Hardware for TDC method now available
- 4 Ch. 300 MHz leading edge discriminator (Philips 704D) on test at Strathclyde
- Non-updating, gate on a single period on RF wave, use output to trigger second discriminator channel and use that to veto the discriminator- select 1 in 17 or so events
- Detail setting of trigger levels critical to edge stability

- Filters used in input to CRO and Discriminator
- Prototype filters developed by Bob Anderson for LLRF (not quite ideal ~ 3dB insertion loss)
- CRO bandwidth s 20GHz- filters help suppress this

- Filters reduce spread of delay offsets measured
- There are two bands visible
 - This might be related to jitter in veto'ing
- Work to be done to understand jitter (both the discrete bands and the random spread)
- Tighter filters may help, different veto arrangement will be tested

Summary

Digitiser Hardware Status

- 4GSa/s 2 Ch VME digitiser in hand- can record entire pulse at super Nyquist at need
- Can be programmed to run with 40MHz external clock (shared by the TDC's)
- Work required to capture waveforms at 1Hz at whatever subsample rate we choose
 - 12.5MSa/sec or 25MSa/s seem likely candidates

TDC hardware status

- 300MHz Discriminator available and running tests (others are available)
- Spare MICE TDC is at Strathclyde and installed in VME crate
- VME-PCI bus has been giving trouble- however resolved now (strange PCI board)
- VME bus on crate at Strathclyde showing strange errors- investigation ongoing
 - Want communication to TDC before adding digitiser

Integration

- Acquisition software routines need to be produced
- Clock required to sync TDC's and digitiser
- Trigger alignment needs to be done between TDC's and Digitiser