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Abstract The non-perturbative nature of quantum chromodynamics (QCD) has historically left a
gap in our understanding of the connection between the fundamental theory of the strong interactions
and the rich structure of experimentally observed phenomena. For the simplest properties of stable
hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path
towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the
methodology by presenting recently determined scattering amplitudes in the light-meson sector and
their resonance content.

1 Introduction

The vast majority of hadronic states observed in nature are not stable under the strong interaction,
but rather decay in the timescale of the interactions. As a result, these resonances do not live long
enough to propagate and interact with particle detectors. Instead, their existence is manifested as
dynamical enhancement of scattering amplitudes of their by-products - states composed of two or
more hadrons. Therefore, to study the spectrum of the fundamental theory of the strong interactions,
quantum chromodynamics (QCD), necessarily requires one to study few-body, strongly-interacting
systems. In this talk I review some of recent progress towards achieving this goal directly from QCD
and I focus my attention in the light sector of QCD [1; 2; 3; 4; 5; 6; 7; 8; 9], where calculations have
reached a higher level of maturity. In particular, I present the very first scattering amplitude in the
isoscalar sector of QCD [1] and the first form factor of a resonance [2; 3]. These studies partly stem
from formal theoretical developments which I briefly discuss [10; 11; 12; 13; 14].

Let me begin by focusing even further to two key examples. The first is perhaps the best understood
hadronic resonance, namely the ρ. This resonance manifests itself as a “bump” in the isovector ππ
scattering amplitude (or cross section), making it a perfect example of the common understanding of a
resonance. This is nicely illustrated in Fig. 1, where one sees a clear enhancement in the ππ amplitude
when the center of mass (cm) energy is in the proximity of 770 MeV. Unitarity dictates that the
amplitude for the `th partial wave can be written in terms of the scattering phase shift, δ`,

M` =
8πEcm

p cot δ` − ip
, (1)

where Ecm and p are the c.m. energy and relative momentum. Using this, we find that the peak of this
amplitude correspond to approximately when the phase shift goes through 90◦ as see in Fig. 1.

Although it is easy to understand resonances as bumps in amplitudes, this definition fails to describe
some of the most interesting resonances in nature. To find a counterexample one can look in the isoscalar
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Fig. 1 The top left and right panels respectively show the ππ isoscalar and isoverctor scattering amplitudes
obtained from experiment [18; 19; 20; 21]. The bottom panels show the corresponding phase shifts.

sector of QCD. This is perhaps one of the most interesting corners of QCD, as it includes tentative
glueballs, molecules, tetraquarks, etc. Also, this sector hosts the lightest of all hadronic resonances,
namely σ/f0(980). Although this plays an important role in a wide range of phenomenology (see
Ref. [15] for a recent review), it was not until recently that its existence was demonstrated with reliable
certainty [16; 17]. As shown in Fig. 1, the reason why the evidence for this state has been contraversial
is due to the absence of a bump-like signature in the low-energy region of the isoscalar ππ scattering
amplitude. This is perhaps most striking when one realizes that its mass is mσ = 449(2216) MeV, which
is smaller than its decay width Γσ = 550(24) MeV [15; 17; 16].

Resonances can be rigorously defined as complex poles in scattering amplitudes. The imaginary
and real components of these poles are directly related to their mass and width, Epole =

√
spole =

mR ± iΓR/2. It is easy to convince oneself that this definition is consistent with the picture of a
resonance as a bump in a scattering amplitude when the width of the resonance is small compare to
its mass. In the remainder of this talk, I review how resonant and non-resonant scattering amplitudes
can be determined from lattice QCD. In Sec. 2, we will implement this methodology to determine the
isovector and isoscalar ππ scattering amplitude. Having determined these amplitudes we will examine
their pole structure and consequently their resonance content. In Sec. 3, I explain how these ideas
are being extended to processes involving electroweak probes and present the first determination of a
resonance form factor from lattice QCD [2; 3].

2 Scattering amplitudes from lattice QCD

In order to define lattice QCD, it is typically necessary to make four important compromises:

1. nonzero lattice spacing,
2. Wick rotation to a Euclidean spacetime,
3. finite spacetime,
4. unphysical values for the quark masses.

The first of these introduces a separation between all points in spacetime, and as a result spacetime
resembles a crystal lattice. The second is done in order to use Monte Carlo sampling 1. The third is
necessary to be able to store gauge fields, propagators, etc, which scale with the volume (L3 × T )2

assuming a cubic volume, where L and T are the spatial and temporal extents. The last one has been
a historical limitation that has been circumvented for the simplest of observables. In this talk I focus
on few-body systems, where calculations are still in the exploratory stages and still being performed
using unphysically heavy values for the quark masses.

For the physics we are after discretization effects introduce negligible artifacts and will be ignored
for the remainder of this talk. Although näıvely one might consider the second and third compromises
above as limitations, these play a crucial role in the determination of few-body observables. First, the
fact that the spacetime is finite leads to a discrete spectrum. Second, the fact that calculations are
performed in a Euclidean spacetime allows us to identify correlation functions as sums of exponential

1 Although the first Monte Carlos real time calculation was recently performed to study the quantum me-
chanical anharmonic oscillator [22].
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Fig. 2 Shown are the elastic ππ scattering phase shifts in the (a) isoscalar [1] and (b) isovector channels [5; 9].
The isoscalar and isovector channels are plotted as a function of the c.m. relative momentum and energy
respectively. These have been determined using two values of the quark masses, and the isoscalar is compared
with the experimental values [18; 19; 20; 21].

whose arguments depend on the discrete spectrum. For example, the two-point correlation function
for a source O†a(0) at time t = 0 and a sink operators Ob(t) can be written as,

C2pt.
ab (t) ≡ 〈0|Ob(t)O†a(0)|0〉 =

∑
n

Zb,nZ
∗
a,ne

−Ent, (2)

where En is the nth eigenvalue of the finite-volume Hamiltonian, Zb,n and Z∗a,n are the overlap factors
with the sink and source operators respectively.

For a state whose energy lies well below multiparticle thresholds, the finite-volume energy can
be identified as its infinite-volume counterpart up to corrections of the order of O(e−mπL) [23]. For
volumes satisfying mπL � 1 one can safely neglect such corrections. For states above multiparticle
thresholds there is no direct relation between finite-volume and infinite-volume states. This is easy
to understand when one remembers that in the infinite-volume limit, states above thresholds are
necessarily resonances and they correspond to complex poles on the second Riemann sheet. In a finite-
volume, since there is not continuum of states there is no branch cut. This means that there is a single
Riemann sheet, and due to causality all states must lie on the real axis.

Instead one can non-perturbativele relate the finite-volume spectrum to the infinite-volume scat-
tering amplitude. For two-particle systems such a relation was first found by Martin Lüscher [24; 25]
and has been generalized to increasingly complex two-particle systems [24; 25; 26; 27; 28; 10; 11; 12].
In general, one can find that an energy level in between the two- and three-particle thresholds satisfies,

det[F−1(P,L) +M(EL)] = 0 , (3)

where F (EL, L) is a known function of the spectrum and the volume [12] and M is the scattering
amplitude we are after. The determinant acts in the space of open channels and partial waves. For
sufficiently low energies where a single partial wave dominates, it is straightforward to show that this
equation simplifies down to

cot δ`(EL) + cotφ(P,L) = 0 , (4)

where cotφ(P,L) is related to F (EL, L).
Using this equation one can then directly map a finite-volume energy obtained from lattice QCD

onto the infinite-volume scattering phase shift of the given channel evaluated at that same energy. This
is what has been done in Refs. [1; 5; 9] for the isoscalar and isovector ππ channels using two different
values of the light quark-masses corresponding to mπ ≈ 236, 391 MeV. The resulting phase shifts and
and fits are shown in Fig. 2. From the isovector phase shifts, it is evident that for these quark-masses
the ρ resonance is fairly narrow and broadens as the quark-masses approach their physical value. This
is as one would expect, given that as the quarks becomes increasingly light the phase space for the ρ
to decay opens up. For the isoscalar phase shifts, the σ is bound for the heavy quark-masses, which is
manifested by the phase shift starting a 180◦. For the lighter ensemble, just like in experiment, it is
less clear what the manifestation of the σ is, except one can conclude it is not a narrow resonance.
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Fig. 3 (a) Shown is the mass and width of the σ resonances for the two values of the quark masses studied
via lattice QCD [1] and it is compared to the results from dispersive analysis of experimental data [15; 17; 16].
(b) Shown is the same quantities for the ρ [5; 9; 30; 31], including a chiral extrapolation in red [29] and the
result from dispersive analysis in black [32; 33; 34; 35; 17; 36].

In Ref. [29] a chiral extrapolation of the isovector scattering amplitude was performed. The resulting
amplitude was in good agreement with experimental values up to c.m. energies of 1.2 GeV, well above
several inelastic thresholds. This confirms that inelastic effects can be safely ignored for this channel
for a large kinematic region. Although a chiral extrapolation of the isoscalar amplitude is presently
missing, in Fig. 2(a) one sees a natural trend for the phase shift from heavy quark masses down to the
experimental point [18; 19; 20; 21].

To rigorously study the resonant content of these amplitudes, one must investigate their pole
structure in the complex plane. Since lattice QCD energies are real, the scattering amplitude is
only constrained on the real axis. To analytically continue onto the complex plane, one must rely
on parametrizations of the scattering amplitude. Using a wide range of these, described in Ref. [7],
one sees in Fig. 3 the resulting pole locations described in terms of the masses and widths of the σ
and ρ resonances. First, lets focus on the ρ poles, which also include values of quark-masses where it
is bound [30; 31]. The red point depicts the pole position obtained after performing a chiral extrap-
olation of the mπ = 236 MeV ensembles [29], and it is in good agreement with solutions to the Roy
equation [37] constrained from experimental data [32; 33; 34; 35; 17; 36]. This figure reemphasizes the
transition of the ρ from a stable particle to a an increasingly broad resonance.

By performing calculations at sufficiently heavy values of the quark-masses, the σ is found to be
bound [1]. This is perhaps the first clear evidence of the existence of the σ from QCD. As mπ approaches
its physical value, the phase space for the σ to decay quickly opens and it becomes a broad resonance
resembling the experimental situation. Given that this corresponds to a pole far from the real axis
where the scattering amplitude has been constrained, it should not be a surprise that there might be
a large systematic error associated with the parametrization chosen to perform such an extrapolation.
This is represented by the scattered red points in Fig. 3(a). This systematic error can be dramatically
reduced by using dispersive techniques, as has been done to analyze experimental data [15; 17; 16].

I end this section by making a couple of remarks. First, it is important to emphasize that determin-
ing the isoscalar finite-volume spectra, and even more the corresponding scattering amplitudes, directly
from QCD is a technological achievement. Having obtained these amplitudes, the determination of res-
onances closely mirrors experimental analysis. As we approach the physical point, the analysis becomes
increasingly complex, just as in experiment. Lattice QCD does possess one advantage over experiment.
This is the fact that one can ‘dial ’ the parameters of the standard model, in particular the quark
masses. This allows one to see direct evidence of states whose experimental signature might be small,
the σ being a perfect example. Second, although I have only discussed kinematic regions where a single
channel is open, these ideas are also applicable for energies more channels are open. In fact the very
first calculations involving more than open channel have been carried recently [4; 5; 7; 8]. Lastly, these
ideas are also applicable in the heavy sector, and the very first coupled-channel calculations involving
heavy quark has been performed [38].
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Fig. 4 (a) Shown is the absolute values of the π+γ → π+π0 amplitude, Aππ,πγ? as a function of the ππ c.m.
energy for two different virtualisties [2; 3], and it is compared to the elastic ππ amplitude below [9]. (b) Shown
are the real and imaginary components of the π → ρ form factor for mπ ≈ 400 MeV [2; 3], and it is compared
to its value at mπ ≈ 700 MeV [6].

3 Electroweak processes from lattice QCD

In the previous section, I discussed how scattering amplitudes can be determined from lattice QCD.
From these one can determine masses, decay widths, and strong couplings of hadronic resonances. As
discussed above, these amplitudes are only accessible from lattice QCD, in part, due to formalism
responsible for Eq. 3. It has recently been demonstrated how these ideas can be extended to the study
of electroweak processes [39; 13; 14; 40]. In particular, Refs. [13; 14] demonstrated how resonant 0→ 2
and 1→ 2 amplitudes in the presence of an external electroweak current can be extracted from lattice
QCD, and Ref. [40] demonstrated how 2 → 2 amplitudes in the presence of an external current can
be studied. From the residue of these evaluated at the resonance poles, one can then rigorously define
and determine the form factors of hadronic resonances.

In order to test these ideas, in Ref. [2; 3] an exploration calculation of the π+γ? → π+π0 amplitude
was performed using a value of mπ ≈ 396 MeV. This amplitude was determined for a range of values of
the c.m. energy and virtuality of the photon. Figure 4 shows a result of the global fit to the amplitude
as a function of energy and two specific values of the virtuality. One sees a clear enhancement due to
the presence of the ρ resonance. By analytically continuing the amplitude onto the resonance pole, the
real and imaginary components of the π → ρ form factor were obtained and are shown in the same
figure. These are compared with a previous calculation performed using mπ ≈ 700 MeV, where the ρ
is stable [6]. Beyond testing these formal ideas, this calculation constitutes the first determination of
a resonance form factor from lattice QCD.

4 Final Remarks and Outlook

In this talk I have discussed some recent developments in the study of scattering and resonances from
lattice QCD. Two-body elastic and inelastic scattering amplitudes are now being determined, albeit at
unphysically heavy quark masses. From these one can unambiguously determine masses and widths of
hadronic resonances, and I have presented the very first rigorous study of the lightest of all hadronic
resonances, the σ. Also, I discussed how these ideas are being extended to the study of few-body
amplitudes involving electroweak currents, and I focused its application on the resonant π+γ? → π+π0

amplitude.
Beyond the application of these ideas to other sectors of QCD, for example the charm sector [38],

these ideas will allow for the determination of phenomenologically interesting observables that are
not directed accessible from experiment. One such example is in the study of elastic form factors of
resonances [40]. The implementation of this formalism will allows us to pear inside resonances and be
able to describe their inner structure, very much as is already being done for the study of stable states.
Presently these ideas are being extended to allow for the study of systems where three particles can go
on-shell [41; 42; 43; 44; 45]. This will allow for a QCD determination of, for example, the three-neutron
force as well as resonances that couple strongly to three-body final states, such as the Roper.
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