Project acronym: EDGeS

Project full title: Enabling Desktop Grids for e-Science

Grant agreement no.:RI 211727

4

CAPACITIES

Tutorial:
Application Porting with the DC-API

Server side

Author: Gabor Szmetanko/ Attila Csaba Marosi
Date: 03/07/2009

1 Preparation

Now that we have a working client application, we can start writing the master. We are
still in ~boinc-sample/edges-tut-files’'upper case_dg. The directory contains the skeleton
of the master application (master.cpp). We will extend that skeleton with new code to
create the master application for the Uppercase application.

1.1 The skeleton

To make the application porting process easier for you, we have already prepared the
skeleton of the master. The skeleton implements all the functionality not related to the
DC-API.

The skeleton has the following functions:
» createWork: creates and submits WUs
» processResult: processes awork unit
» createFinalResult: generates the final output
o printHelp: prints the help text
* main: connects them all together
It also contains some basic include statements, constants, and global variables.

Some of the functions are aready implemented, while others should be completed by
you. Places in the source code, where you should insert new code, are marked with a
comment similar to the following:

/* TODO Declare the global variables for the househol ding of the Wl */

2 Initialisation of the DC-API
2.1 Open the master.cpp source file in your preferred editor

2.2 Insert the new include statement at the top of the file
4i
4
4
4i
4i
4i
i

ncl ude <stdlib. h>

ncl ude <getopt. h>

ncl ude <string. h>

nclude <limts. h>

ncl ude <stdi o. h>

ncl ude <errno. h>

ncl ude <dc. h>

#i ncl ude "conmon. h"

New lines are coloured green in the text. Leave everything else unchanged! In the
following sections, new code blocks will aways be coloured gr een.

2.3 Insert a call to the DC-API initialisation function after the
command line processing section in the main function

int main(int argc, char *argv[]) {

if (lconfigFile) {
fprintf(stderr, "“You nust specify "
“the config file\n");

exit(l);

}

if (DC.initMaster(configFile) != DC OK) {
fprintf(stderr, “"DC.initMaster failed, exiting.\n");
DC log(LOGCRIT, "DCinitMaster failed, exiting.");
exit(1);

}

return O;

3 Work unit generation

The master should create and submit work units. To create work units you should use the
DC_createVWU function. The function has the following parameters.

* Application name
* Arguments
* Number of subresults
* A uniqueidentifier tag for the WU
It returns a DC_Workunit, which might be used to register inputs/outputs with the WU.

We will split the original input file into smaller chunks. Each chunk contains a subset of
the lines from the original file. Each work unit will process one chunk. We will use a
constant to specify the number of lines per WU. This value will aso specify the total
number of WUSs.

3.1 Declare a global variable to hold the current index

#i ncl ude <stdi o. h>
#i ncl ude <errno. h>
#i ncl ude <dc. h>

#i ncl ude "conmmon. h"

#define LI NES_PER W 20

i nt createdWJs;

3.2 Locate the createWork function

3.3 Generate the tag of the WU

while (!feof (input)) {
char wuTag[16]; /* each WJ has a uni que tag */
char buffer[1024]; /* a buffer to read the lines in */
DC Workunit *wu; /* WU struct to configure the Wl */
FILE *wul nput; /* WU input file (chunk) */

snprintf(wTag, sizeof(wTag), "%", createdWs + 1);

3.4 Generate the work unit

while (!feof (input)) {
char wuTag[16]; /* each WU has a uni que tag */
char buffer[1024]; /* a buffer to read the lines in */
DC Workunit *wu; /* WU struct to configure the Wl */
FILE *wul nput; /* WU input file (chunk) */

snprintf(wTag, sizeof(wTag), "%l", createdWs + 1);

wu = DC createWJ "uppercase", NULL, 0, wuTag);

if (lw) {
fprintf(stderr, “"Work unit creation has failed.\n");
DC 1og(LOG CRIT, "Wirk unit creation has failed.");
exit(1);

3.5 The WU input file is ready, register it with the WU
(createWork)

for (int i =0; i < LINES_PER WJ; i++) {
if ('fgets(buffer, sizeof(buffer), input)) { break; }
fprintf(wilnput, "%", buffer);

}

fcl ose(wul nput) ;

i f (DC_addWJl nput (wu, | NPUT_LABEL, "wu-input.txt",
DC_FI LE_VOLATILE)) {
fprintf(stderr, "Failed to register WJ i nput file\n");
DC log(LOG CRIT, "Failed to register WJ i nput file");
exit(1l);

3.6 We should also register the output file with the WU

i f (DC_addWul nput (wu, | NPUT_LABEL, "wu-input.txt",
DC_FI LE_VOLATI LE)) {

fprintf(stderr, "Failed to register WJ i nput file\n");
DC I og(LOG CRIT, "Failed to register WJ i nput file");
exit(1);

}

i f (DC_addWJQut put (wu, QUTPUT_LABEL)) {
fprintf(stderr, “"Failed to register WJ output file\n");
DC log(LOG CRIT, "Failed to register WJ output file");
exit(1l);

4 Submitting the work unit

4.1 We should submit the WU into the DG with a call to the
DC_submitwWu function

i f (DC_addWuCut put (wu, CUTPUT_LABEL)) {
fprintf(stderr, "Failed to register WJ output file\n");
DC | og(LOG CRIT, "Failed to register WJ output file");
exit(l);

if (DC_subm t\WJ(wu)) {
fprintf(stderr, "Failed to submt WARN");
DC log(LOG CRIT, "Failed to submt WJ');
exit(1);

}

creat edWUs ++;

4.2 Invoke the createWork function from the main function

int main(int argc, char *argv[]) {

if (DC.initMaster("dcapi.conf") = DC K {
fprintf(stderr, “"DC initMster failed, exiting.\n");
DC I og(LOG CRIT, "DC inithMaster failed, exiting.");
exit(l);

createWrk();

return O;

5 Setting up callbacks

Now that we have submitted work units into the DG, the clients can start working. The
incoming results should be processed to produce a meaningful output. Using the DC-API
it is done by setting up callback functions. To process the results, you should set up a
result callback function.

Callback functions can be implemented to handle various tasks:
* Result processing
» Subresult processing
» Message processing

These functions should be registered with the DC-API. They can be set individually
(DC_setResultCh, DC_setSubresultCb, DC_setMessageCb) or simultaneously
(DC_setMasterCh).

5.1 Register our result callback function with the DC-API

int main(int argc, char *argv[]) {

if (DC.initMaster(configFile) = DC OK) {
fprintf(stderr, "DC initMster failed, exiting.\n");
DC I og(LOG CRIT, "DC inithMaster failed, exiting.");
exit(l);

DC set Resul t Ch(processResul t);
createWrk();

return O;

6 Processing events

In its man loop the master application should periodically cal the
DC_processMaster Events function. The previously set callback functions will be invoked
thisway.

6.1 Declare a global variable to keep track of the number of
already processed WUs

#i ncl ude <stdi o. h>
#i ncl ude <errno. h>
#i ncl ude <dc. h>

#i ncl ude "conmon. h"

#define LI NES_PER WJ 20

i nt createdWls;

i nt processedWs;

6.2 Set up aloop in the main function to check for events until
all of the results arrive

int main(int argc, char *argv[]) {
DC set Resul t Ch(processResul t);
creat eWork();
whil e (processedWJs < createdWls) ({

DC pr ocessMast er Event s(60) ;

return O;

10

7 Processing the results

Previously we registered a function (processResult) as a callback. The next task is to
implement this function. This function will simply make copy of the output file of the
WU. The result callback function should have the following prototype:

void (*DC_ResultCallback) (DC_Wor kunit *wu, DC_Result *result);
DC_processMaster Events call s the callback function.
Tasks:
* Find out which WU hasfinished (DC_getWUTag)
» Process the outputs (DC_getResultOutput)
* Destroy the WU (DC_destroyWU)

7.1 Increment the processedWUs variable and extract the tag
of the WU

voi d processResult (DC Vorkunit *wu, DC Result *result) {
char *output; /* the output file name of the WJ */
char *tag; /* the tag of the WJ */
char cnd[256]; /* the copy command */

processedWJs ++;
tag = DC _get WJTag(wu) ;

11

7.2 Make sure the received result is not failed

voi d processResult (DC_Vorkunit *wu, DC _Result *result) {
char *output; /* the output file nane of the WJ */
char *tag; /* the tag of the WJ */
char cnd[256]; /* the copy command */

processedWs++;
tag = DC_get WJTag(wu) ;

if ('result) {
fprintf(stderr, "Work unit % has been failed\n",
tag);
DC | og(LOG WARNI NG "Work unit % has been fail ed"
tag);
free(tag);

return;

12

7.3 Get the name of the result output file

if (lresult) {
fprintf(stderr, “"Work unit % has been failed\n", tag);
DC | og(LOG WARNI NG, "Work unit % has been failed", tag);
free(tag);
return;

out put = DC _getResul t Qut put (result, QOUTPUT_LABEL);
if ('output) {
fprintf(stderr, "Work unit % contains no output file\n",
tag);
DC | og(LOG_ WARNI NG, "Work unit % "
“contains no output file", tag);

free(tag);
return
}
7.4 Clean up
snprintf(cnd, sizeof(cnd), “/bin/cp '%' 'result %s.txt'", output,
tag);
systenm(cnd);

DC | og(LOG NOTI CE, "Work unit % has been conpl eted", tag);
DC _destr oyWJ(wu) ;

free(output);
free(tag);

13

8 Creating the final result

The last thing to do is to produce the final result. No DC-API specific function calls are
reguired to do that. The function has been already defined in the skeleton file. Y ou do not
have to defineit, just insert acall to it at the end of the main function.

8.1 Insert a call to the calculateFinalResult function at the end
of the main function

whil e (processedWs < createdWs) {
DC processMast er Event s(60) ;
creat eFi nal Resul t();

return O;

9 Compiling the master

You will find aready to use make file in the tutorial directory. In order to compile DC-
API master applications, you have to pass some additional libraries to the linker. Y ou can
obtain these library flags with the following command:

pkg-config -libs dcapi-boinc-master

Y ou do not have to change the make file, it has been prepared for you.

9.1 Compile the master with the supplied make file

make master

9.2 If you have done everything right, the master will compile
and a binary with the same name will come into existence

14

10 Cheating
The completed master.cpp can be found in the same directory named master_final.cpp.

mv master.cpp master_my.cpp
cp master_final.cpp master.cpp

15

