

Japan ADS Project

<u>Takanori SUGAWARA</u> Japan Atomic Energy Agency

Contents

- National Policy for Nuclear Energy
- Partitioning and Transmutation Technology
- R&D for ADS in JAEA
- Research Plan at J-PARC
- Summary

National Policy for Nuclear Energy

http://www.genanshin.jp/english/index.html

Current status of the NPPs in Japan

- Before March 2011, 54 units (48.8GWe) were operated in Japan.
- After March 2011, 6 units excluding Fukushima Daiichi 6 units were decided to be decommissioned.
- Nuclear Regulatory Authority (NRA) was newly established on 2012 and new safety regulations were issued by NRA.
- NRA approved basic design of 10 units and 5 units were restarted

4

"Strategic Energy Plan" in Japan

"Strategic Energy Plan" issued in Apr. 2014

- Nuclear power is an important base-load power source.
- Dependency on nuclear will be decreased.
- Future volume of nuclear capacity will be carefully examined.

"Strategic Energy Plan" in Japan

Position of Nuclear Power

Nuclear power is an important base-load power source as a low carbon and quasi-domestic energy source, contributing to stability of energy supplydemand structure.

Steady approach for key issues to be solved without putting off implementing measures into the future

(1) Spent fuel management

- Drastic reinforcement of measures for final disposal of high-level radioactive waste
- ✓ Expanding storage capacity of spent fuels
- Promotion of technology development on volume reduction and mitigation of degree of harmfulness of radioactive waste
- Promotion of R&D for technologies including nuclear transmutation technology using fast reactors and accelerators

(2) Nuclear fuel cycle

The basic policy of Japan is to promote a nuclear fuel cycle that reprocesses spent fuels and effectively utilizes the plutonium retrieved.

Partitioning and Transmutation Technology

R&D on P&T in JAEA

- Partitioning and Transmutation (P&T) technology is expected to be effective to mitigate the burden of the HLW disposal by reducing the radiological toxicity and heat generation.
- □ JAEA has been studying this technology for more than 20 years.

Homogeneous cycle

Double-Strata (ADS)

MA is homogeneously mixed to FBR fuel with small amount up to 5 wt.%.
MA transmutation is performed in all electricity generating FBR plant. - Dedicated (second) transmutation fuel cycle with Accelerator-Driven System (ADS) is added to commercial fuel cycle.

•MA recovered from commercial fuel cycle is confined in the compact transmutation cycle.

Accelerator Driven System (ADS)

R&D for ADS in JAEA

A workshop on the Status of ADSs Research and Technology Development, 7-9 Feb 2017, CERN

Conceptual Design of ADS in JAEA

Purpose : MA transmutation

- Proton beam : 1.5GeV ~30MW
- Spallation target : LBE
- Coolant : LBE
- Subcriticality : k_{eff} = 0.97
- Thermal output : 800MWt
- Core height : 1000mm
- Core diameter : 2440 mm
- Fuel inventory : 4.2t (MA:2.5t)
- Fuel composition : (MA + Pu)N+ZrN (Mono-nitride) Inner : 70%MA+30%Pu Outer : 54%MA+42%Pu
- Transmutation rate :
 - 250kg(MA) / 300EFPD

K. Tsujimoto, H.Oigawa, K.Kikuchi, et. al, "Feasibility of Lead-Bismuth-Cooled accelerator-Driven System for Minor-Actinide Transmutation", 11 *Nucl. Tech.* 161, 315-328 (2008).

Technical Issues of ADS

Increase Beam Reliability

- Beam-trip is one of the critical issues for ADS
- To reduce the beam-trip frequency, double-accelerator concept is proposed
- By running two accelerators (50% of rated power/acc.), reliability requirement for ADS can be satisfied

k_{eff} adjustment by SAR

- JAEA
- To reduce the proton beam current, ADS with Subcriticality Adjustment Rod (SAR) was investigated
 - Install 3 B₄C SARs (Total Worth:1.5%dk/k)
 - Possible to keep proton beam current around 10mA during the burnup cycle

Development, 7-9 Feb 2017, CERN

Improvement of passive safety

- Reflecting the Fukushima Accident, conceptual design of DRACS (Direct Reactor Auxiliary Cooling System) is investigated
- PLOHS with DRACS was analyzed by RELAP5-Mod3
- It was confirmed the coolant temperature can be kept below 400°C even in the case of Station Black Out

Subcritical core arrangement

- Layout of reactor components including newly added equipment (ex. SAR) was performed
- The scheme to replace beam window and fuel is confirmed

Research Plan at J-PARC

A workshop on the Status of ADSs Research and Technology Development, 7-9 Feb 2017, CERN

Transmutation Experimental Facility (TEF)

Image View of TEF

Transmutation Physics Experimental

Facility: TEF-P

 Purpose: To investigate physics properties of subcritical reactor with low power, and to accumulate operation experiences of ADS.
 Licensing: Nuclear reactor: (Critical assembly)
 Proton beam: 400MeV-10W
 Thermal power: <500W

ADS Target Test Facility : TEF-T

 Purpose: To research and develop a spallation target and related materials with highpower proton beam.
 Licensing: Particle accelerator
 Proton beam: 400MeV-250kW
 Target: Lead-Bismuth Eutectic (LBE, Pb-Bi)

Pb-Bi Target

Critical Assembly

Multi-purpose Irradiation Area

Proton Beam

Transmutation Physics Experimental Facility (TEF-P)

- TEF-P is designed to take over the experiences and functions of FCA to minimize the cost and risk for newly developed equipment.
- Low power critical facility for reactor physics and nuclear data of transmutation systems including ADS and FBR.
- By replacing central partial matrix tubes with pintype assembly, MA fuel can be used with cooling and remote handling.

Fixed half assembly

The second

Core

Movable, shield

Safety/control rod

drive mechanism

Proton beam

ADS Target Test Facility (TEF-T)

- Experiments for irradiation damage of material by protons and neutrons
- Material irradiation test for material for beam window of ADS, structure material for FBR, and material for fusion reactor
- Development of database for engineering feasibility of ADS by experiments in various condition (ex. temperature and velocity of flowing LBE)

Test device for flow visualization by PIV method (Full-scale transparent acrylic model of target vessel

Development of ADS Transmutation System

Development, 7-9 Feb 2017, CERN

Summary

- National Policy for Nuclear Energy
 - "Nuclear power is an important base-load power source"
 - "GOJ will promote development of technologies for reducing the volume and harmfulness of radioactive waste in order to secure a wide range of options in the future."
- R&D for ADS in JAEA and J-PARC
 - Current status and future plan on R&D of ADS were summarized.
 - Various basic R&D have been implemented, and new experimental facility, TEF, is proposed in the J-PARC project. TEF is expected to play important roles as an international research facility.

Backup

A workshop on the Status of ADSs Research and Technology Development, 7-9 Feb 2017, CERN

Estimation of Beam-trip Frequency

Beam-trip duration	Allowable beam- trip frequency	100% to 0%	
0 - 10sec	20,000	6,600	
10sec - 5min	1,300	12,000	
> 5min	42	1,500	
	Reduction of temperature Multiplexing and		wngrade of each component
Beam-trip duration	Allowable beam- trip frequency	100% to 50%	50% to 0%
0 - 10sec	500,000	465	47
10sec - 5min	17,000	10,507	508
> 5min	42	N/A*	21

*: Due to the necessity to shutdown the system (to prevent the LBE freezing), the allowable beam-trip frequency was determined. However, in the 100% to 50% case, it was not necessary to shutdown the system.

Beam-trip frequency in the double-accelerator concept satisfied the allowable beam-trip frequency

Construction Schedule (Tentative)

JAEA's current mid- to long-term plan

Material data taken in TEF-T

- Irradiation data at higher temperature range than existing experiments is required to realize ADS
- TEF-T can provide irradiation data for rated operation condition not only for future ADS but also for MYRRHA

New Test Equipment for TEF-T Design

OLLOCHI Oxygen-controlled Lbe LOop for Corrosion tests in High temperature

- Material corrosion database for various temperature, oxygen potential, LBE flow rate will be collected
- The loop will be operated from next April
- Addition of corrosion test section with mechanical stress are planned

INIMORTAL Integrated Multi-functional MOckup for TEF-T Real-scale TArget Loop

- Demonstration of safe operation of LBE loop by reflecting operation condition of J-PARC LBE Spallation target
- Tests for dynamic behavior of heat removal, functional tests of sensors, loop components are underway

Oxygen Sensor Calibration Device

- To prevent corrosion by flowing LBE, oxygen potential in LBE should be controlled in appropriate potential range (10⁻⁵ to 10⁻⁷ %)
- Development of oxygen potential sensor and loop tests for oxygen potential control mechanism are underway