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KIPT ADS Facility

US Government is supporting the development, construction,
and operation of an ADS Facility (KIPT Neutron Source Facility)
at Kharkov Institute of Physics & Technology (KIPT) of Ukraine
as a part of the Russian Research Reactor Fuel Return
(RRRFR) program of the United States Department of Energy.

Argonne National Laboratory is performing this task in
collaboration with KIPT.

The facility consists of an accelerator driven subcritical system
utilizing low enriched uranium oxide fuel with water coolant
and beryllium-carbon reflector.

An electron accelerator is utilized to generate the neutron
source driving the subcritical assembly.

The target has tungsten or natural uranium plates cooled with
water coolant for generating neutrons.



KIPT Neutron Source Facility

Objectives:

* Demonstrate accelerator driven systems operation
and monitoring technigues,

* Provide capabilities for performing basic and applied
research using neutrons,

» Perform physics and material experiments inside the
subcritical assembly and neutron experiments

including cold neutrons outside the subcritical
assembly,

* Produce medical isotopes and provide neutron source
to perform neutron therapy procedures, and

« Support the Ukraine nuclear power industry by
providing the capabilities to train young specialists.

National chothy EMNSI:IIM"




KIPT Neutron Source ?—‘aciil/iitry Site
February 2012




KIOPT Neutron Source Facility Site
February 2014




KIPT Neutron Source Facility Site
June 2016

a INYSA



KIPT Electron Accelerator Configuration
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1 - klystron gallery, 2 — Accelerator tunnel, 3 — Power supply,
4 - Electron gun, 5 - First accelerating section, 6 - Energy filter,
7 - Accelerating section, 8 - Klystron amplifier, 9 — Waveguide,

10 - Quadruple triplet magnet, 11 — Electron Transportation channel,
12 — Subcritical Assembly tank
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KIPT klystron Gallery and Accelerator Tunnel
During Construction




KIPT Target Design

* Tungsten or uranium is the target material for
generating neutrons. Water coolant and
aluminum alloy structure are used for the
target assembly.

“The  target assembly  configurations
developed to accommodate square beam
profile and hexagonal fuel geometry.

» The accelerator beam power is 100 KW with
100 MeV electrons.

= Conservative design rules were used for the

target assembly design.
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KIPT Target Assembly Configurations




KIPT Power and Temperature Distributions
of the Tungsten Target - 1

Temperature
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KIPT Power and Temperature Distributions
of the Tungsten Target - 2
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Neutron Source Intensity

Tungsten 1.88x10% n/s
Uranium 3.06x10' n/s



KIPT Electron Beam Parameters and Target Axial

Tungsten Target Uranium Target
Beam Power: 100 kW Channey| Water | Target | Clad | Water | Target |
) ad
_ ) Number Channell PIIate Thickness Channel! _Pllate Thickness
Beam Profile: Uniform Thickness|Thickness| mm  [Thickness|Thickness|
minn mm minm minn i
Electron Energy: 100 MeV 0 1.0 1.0
,, o 1 1.75 3.0 | 0.25x2 | 1.75 3.0 | 0.7 X2
Beam Size: 6464 mm 2 1.75 30 | 0.25x2 | 1.75 25 |0.95 X2
_ ) 3 1.75 3.0 | 0.25x2 | 1.75 25 | 0.95 X2
Beam Window: 66x66 mm 4 1.75 40 | o025x2 | 1.75 25 |0.95 x2
. 5 1.75 40 | 025x2 | 1.75 30 | 0.7 X2
Coolant: Water 6 1.75 6.0 | 0.25x2 | 1.75 30 | 0.7 X2
7 1.0 100 | 0.25x2 | 1.75 40 | 0.7 X2
Water Pressure: S atm 3 1.75 50 | 0.7 X2
) 9 1.75 70 | 07 X2
Inlet Temperature: 20.0°C 10 1.75 100 | 0.7 X2
o o 1 1.0 14.0 | 0.7 X2
Outlet Temperature:24.1°C | 1125 | 33.0 35 195 | 565 | 16.9
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WWR-M2 LEU Fuel Design

Coolant
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KIPT Subcritical Assembly Tank




KIPT Subcritical Assembly Tank with the Supporting
Grid and the Carbon Reflector Container
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KIPT Subcritical Configuration with the Target Assembly




Subcritical Assembly Configurations of the KIPT ADS
Utilizing Tungsten and Uranium Target
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Energy Energy Energy Total
Flux-along | Flux along Deposited in | Deposited |Deposited in| Energy
Target | # of FAs k-eff the core the target . A
(n/cm2-s) (n/cm2.s) the target |in the core |the reflector | deposition
(KW) (KW) (KW) (KW)
W 40+ 0.97855 1.162e+13 | 1.353e+13 84.19 134.77 8.10 297.06
+0.00012 +0.36 % +0.33% +0.01 % +0.35% +0.22 % ’
U 37 0.97547 1.965+13 2.470e+13 88.42 196.89 11.57 296.89
+0.00012 +0.26 % +0.25% +0.01 % +0.35% +0.19% ’

*Number of fuel assemblies reduced to 38
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Radial and Axial Energy Deposition for Uranium Target
with 37 Fuel assemblies and 100KW/100MeV Electrons

(KWicm?3)

1.4438-04
4.949E-06 4.016e-04
1.391E-05 1.117E-03
3.908E-05 2.100E-02
iy : 8651603
3 669204 2.4076-02
2 436E-02 £.698E-02
£.945E-03 1.864E-01
1.923E-02 5.186E-01
5.404E-02 B

14438400

¥ dimension, cm

za

Bxial height, cm

-3 -20 -10 0 10 20 30
X dimension, om

1 5 1 15 b % !
Radius, o

a INYSA



Radial and Axial Total Neutron Flux Distributions
Using Uranium Target with 100KW/100MeV Electrons
(n/cm?s)
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KIPT Suberitical Assembly Overview




The Subcritical Assembly Top Shield Cover




Top Shield, Electron Beam, and Shield Cover




Top Shield Left Section




Top Shield and Bending Magnet View




Heavy Concrete Top Biological Shield Dose

Including neutrons and photons from the Subcritical Assembly
and 80 W beam bending losses
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Primmary Cooling Loop Equipment
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Secondary Cooling Loop Building
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Secondary Cooling Loop Equipment




Optimum Neutron Flux Detector Positions




Control Room
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Lessons Learned for Future Accelerator
Driven Systems
Accelerator Driven Systems design issues, which requires special
attention:

» The target and the neutron flux detectors impact the fuel
machine design and its performance.

» The selection of the neutron flux detector locations.

* The neutron flux detector replacement procedure.

* The beam losses in the accelerator tunnel and the impact on the
shield design.

* The beam bending losses above the subcritical assembly and
the impact on the top shield design.

* The top shield Mechanical design above the suberitical
assembly considering the target replacement and the bending
magnet maintenance.

* The target replacement procedure.
* The bending magnet design for target replacement operation.
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KIPT Neutron Source Facility Summary

®* The KIPT neutron source facility has been
successfully developed, constructed and the
commissioning process Is underway.

®* The facility has a subcritical assembly and it
Is driven by 100 KW electron accelerator with
100 MeV electrons.

® The subcritical assembly uses low enriched
uranium fuel, water coolant, and beryllium-
graphite reflector.

®* The design satisfies the facility objectives
including the possibility for new functions.
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