Alternative designs for ADSR drivers
FFAGs and electron linacs
EUCard2 Workshop on ADS, CERN

Roger Barlow

Int. Inst. for Accelerator Applications
The University of Huddersfield

8th February 2017
Why an FFAG?

ADS driver must deliver \(\sim 10\text{mA} \) of protons at \(\sim 1\text{GeV} \) with unprecedented reliability, and should not add significantly to the cost of the power station.

<table>
<thead>
<tr>
<th></th>
<th>Energy 1 GeV</th>
<th>Current 10 mA</th>
<th>Cost (\ll 1\text{Bn})</th>
<th>Reliability in principle</th>
<th>Exists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclotron</td>
<td>N (?)</td>
<td>Y (?)</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Synchrotron</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>LINAC</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>FFAG</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
</tbody>
</table>

The proton nsFFAG is the only design that definitely ticks all these boxes.

Unfortunately no-one’s built one yet
What is an nsFFAG?

‘A cyclotron from the outside but a synchrotron from the inside’

DC magnets (hence -FF-)

B field varies significantly with radius.

As particle energy increases, field increases

Acceleration is *fast* - not limited by magnet inductances.

Beam pipe more compact than for a cyclotron

Field gradients provide strong focussing (- AG).

Large dynamic aperture and low losses.

Conventional (scaling)

Field variation gentle $B \propto R^k$.

Optics unchanged through acceleration cycle.

- Tune constant: avoid resonances

Not isochronous

- Need to sweep frequency

- Pulsed operation

- Limited mean current

Nonscaling

Field variation steep

Optics changes during acceleration

- Tune varies. Hit resonances - but survive

Can be made isochronous

- Fixed frequency

- CW operation

- High mean current
Real and proposed FFAGs

KEK - KURRI

EMMA

PAMELA

Proposed Proton/Carbon therapy FFAG

PIP

Proton Isotope Production
Up to 28 MeV protons
Carol Johnston (FNAL) and David Bruton (Huddersfield)
Will also be covered in Dr Song Hyun Kim’s talk - but he will concentrate on target KUCA (Kyoto University Critical Assembly)

150 MeV proton FFAG ring Producing useful beams Current $\sim 1nA$
From Y Ishi’s talk at FFAG16

Nice steady 1 nA currents

Measured tune - varies with energy. Seems odd given scaling FFAG rationale

Recent problems with coolant leak in RFQ....
Anticipate increasing demand for neutrons - the ESS will not be enough (and ILL will close)
So plan ISIS upgrade:
180 kW → multi-MW
New linac! 70 MeV → 180 MeV (800 MeV?)

Neutrons pulsed - complementary to ESS

Upgrade 800 MeV synchrotron to 3.2 GeV.
15-20 year timescale. Time to develop small (2.6-5 m radius) test ring before main ring (25-50 m radius)

FFAG or RCS? FFAG preferred (high rep rate, more beam power, high momentum acceptance, large horizontal emittance possible, magnets can be SC or permanent.)
2 FFAG designs: pumplet and spiral DF
Scaling and non-scaling versions

Two pumplet patterns

<table>
<thead>
<tr>
<th>Model</th>
<th>Structure</th>
<th>Energy (MeV)</th>
<th>R_{inj} (m)</th>
<th>ρ_{inj} (m)</th>
<th>β_h</th>
<th>β_v</th>
<th>\hat{D}_h</th>
<th>Q_h</th>
<th>Q_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumplet-1</td>
<td>fDFDf</td>
<td>3-10</td>
<td>4.974</td>
<td>0.91</td>
<td>4.68</td>
<td>2.72</td>
<td>0.71</td>
<td>3.20</td>
<td>2.72</td>
</tr>
<tr>
<td>Pumplet-2</td>
<td>dDFDd</td>
<td>3-10</td>
<td>4.974</td>
<td>0.91</td>
<td>4.00</td>
<td>2.81</td>
<td>0.67</td>
<td>3.40</td>
<td>2.82</td>
</tr>
<tr>
<td>RCS</td>
<td>dDFDd</td>
<td>3-10</td>
<td>4.974</td>
<td>2.40</td>
<td>2.90</td>
<td>7.20</td>
<td>0.65</td>
<td>3.22</td>
<td>2.73</td>
</tr>
<tr>
<td>Pumplet-3</td>
<td>fDFDf</td>
<td>800-3200</td>
<td>52.0</td>
<td>7.60</td>
<td>19.80</td>
<td>10.62</td>
<td>1.36</td>
<td>9.21</td>
<td>7.38</td>
</tr>
<tr>
<td>Pumplet-4</td>
<td>dDFDd</td>
<td>800-3200</td>
<td>52.0</td>
<td>7.60</td>
<td>14.93</td>
<td>8.72</td>
<td>1.32</td>
<td>9.21</td>
<td>7.38</td>
</tr>
<tr>
<td>RCS</td>
<td>dDFDd</td>
<td>800-3200</td>
<td>52.0</td>
<td>24.60</td>
<td>16.69</td>
<td>8.53</td>
<td>1.04</td>
<td>9.24</td>
<td>7.80</td>
</tr>
</tbody>
</table>

Pumplet FFAG designs compare well with RCS for MW proton spallation source
Spiral DF

Sharp edge between D and F (negative field). Large flutter f.

$$B(r, \theta) =$$

$$B_0 \left(\frac{r}{r_0} \right)^k \left[1 + f \cos(N \theta - N \tan \zeta \ln \left(\frac{r}{r_0} \right) \right]$$

Combines features of radial and spiral FFAGs - compact and versatile

Developed by Shinji Machida

Magnet model under study
Spiral DF

Test ring
3-27 MeV
Momentum ratio 3
$\zeta = 20^\circ$
$k = 3$
Radius: 2.1 - 2.6 m
1.1 m straight

Main ring
0.4 - 3 GeV
Momentum ratio 4
$\zeta = 58^\circ$
$k = 50$
Radius: 30.2 - 31.0 m
3.6 m straight
Medical Accelerators - can they be adapted for ADSRs?

Maybe

Protons (and other ions) at 230 - 300 MeV
E.g. NORMA\(^1\) 70 - 250 MeV
Scaling FFAG. RF frequency changes by factor 2.6 over cycle. Accelerates 1 bunch at a time.

High current machine should be CW not pulsed
Even then:
1) Activation scales with current.
2) Space charge may be a problem, but early studies suggest manageable
3) Injection and extraction may be difficult. Especially extraction

\(^1\)J M Garland et al, Normal-conducting scaling fixed field alternating gradient accelerator for proton therapy, PRSTAB 18 094701 (2015)
HEATHER
HElium ion Acceleration for radioTHERapy

Jordan Taylor, Rob Edgecock, Carol Johnstone
900 MeV He^{2+} or 450 MeV H_2^+. Not explicitly high current

Ring 1: Superconducting ring, 2.5 m radius 0.5 to 400 MeV in 350 turns
Large phase acceptance
HEATHER Ring 2

8 identical magnets
Racetrack gives space for extraction etc
Good isochronicity and phase acceptance. Does not cross integer resonance

Adaptable for higher currents and energies
Electrons?

Proposed by Abalin\(^2\)
Continued by Yaxi Liu\(^3\)

Studies continue: latest by Feizi and Ranjbar\(^4\)

Two stage process:
1) Electrons make Bremsstrahlung photons
2) Photons make neutrons through \((\gamma, n)\) reactions on the giant dipole resonance

Dipole resonance is broad. Peak occurs when \(\lambda \sim r_{\text{nucleus}}\) - so don’t want energy too high.

\(^4\)H. Feizi and A.H. Ranjbar, Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water, J. Inst 11 P02004 (2016)
8 cm diameter Target is 0.9 cm W + 4 cm U + 2 cm Be
(Be gets neutrons from low energy γs)
100 MeV electrons gives 4×10^{14} neutrons/s/mA, (compare 1 GeV protons give $\sim 2 \times 10^{17}$ neutrons/s/mA)
With $k_{\text{eff}} = 0.98$ that gives $0.25 \text{MW}_{Th}/mA$
Need beam current of thousands of mA. Achieved - but in storage rings.
Peak neutron energy around 0.1 eV due to coolant/moderator D_2O.
Target needs cooling \rightarrow moderation \rightarrow thermal neutrons

Taken from Feizi and Ranjbar
Being built at Kharkov\(^5\)

100 kW, 1 mA of 100 MeV electrons. (Nothing to be gained by higher energy)
Tungsten or Uranium target
2-3 \(10^{14}\) neutrons/sec
131-192 kW thermal power
So you need 1000 of these for a *small* power reactor or incinerator

Conclusions

FFAGs are a promising design for an ADS driver
Not currently being developed as such
But machines being discussed/designed currently could readily be adapted for ADS use

Electron beams can provide some interesting neutron sources where fluxes required not so high, but very much a niche market.