

Beam Window Design for ADS system in JAEA

Takanori SUGAWARA

Japan Atomic Energy Agency

Introduction

- JAEA has investigated 800MWt LBE cooled Accelerator-Driven System (ADS) to transmute minor actinides (MA).
- Many inherent issues
 - Design of beam window
 - Accelerator reliability
 - LBE technology
 - Reactor physics with MA fuel
 - • •
- Beam window will be used in the following severe condition
 - heat generation by proton beam
 - external pressure by LBE
 - creep deformation at high temperature
 - corrosion in LBE
 - irradiation damage

Previous study*

- Ellipse model
 - 235mm radius and 2mm thickness at the top
- It's feasible, but more feasible concept (hemisphere, thicker) is required → to mitigate the design condition

Purpose

- To realize the small burnup reactivity, subcriticality adjustment rod (SAR) is introduced to the ADS
 - Burnup analysis
 - Particle transport analysis
 - Thermal hydraulics analysis
 - Structural analysis
 - → More feasible beam window concept

Calculation condition

Thermal power	800 MWt
Coolant	LBE
Inlet temperature	300° C
Coolant velocity	2.0 m/sec
Upper limitation of keff	0.97
Operation period	600 EFPDs
Number of fuel assemblies	84
Pitch	233.9 mm
Width	232.9 mm
Number of fuel pins per assembly	391
Composition	(MA+Pu)N+ZrN
Pin outer diameter	7.65 mm
Thickness of cladding tube	0.5 mm
Pin pitch	11.48 mm
Active height	1000 mm

Calculation flow

Burnup analysis

- ADS3D code* was employed
 - Neutron transport in 3D geometry (deterministic method) and burn-up calculation were performed
- Calculation condition

• 3 SARs (B₄C type) were placed in fuel region

• To prevent the SAR drawing, tungsten block was

added to the SAR.

 All SARs were drawn 20cm by each 100days during the operation

Handling head

Fig. Change of the k-eff value

Fig. Change of the proton beam current

- The k-eff value would be maintained 0.97 during the cycle because it is possible to move SARs by mm/sec unit.
- This concept could maintain the proton beam current about 10mA (20mA in the previous study)

Particle transport analysis

- PHITS code was employed.
- Gaussian profile was assumed.

	Previous study	This study
Proton beam energy [GeV]	1.5	←
Proton beam current [mA]	20	10
Beam duct radius [mm]	235	←
Shape of beam window	Ellipse	Hemispherical
Thickness of beam window at top [mm]	2.0	←
Thickness of beam duct [mm]	10.0	←
1σ of Gaussian profile for proton beam [mm]	111.6	←

A workshop on the Status of ADSs Research and Technology Development, 7-9 Feb 2017, CERN

- The maximum heat density was about 40 W/cc/mA in the spallation target
- The heat density at the top of the beam window was 27 W/cc/mA

Thermal hydraulics analysis

STAR-CCM+ code was employed

LBE velocity at the inlet	2.0 m/sec
LBE temperature at the inlet	300 °C
Turbulence model	k-ε model
Material of beam window	T91 steel

Fig. Temperature distribution in spallation target region

Fig. Temperature distribution in beam window

- The maximum temperature in the beam window was 409℃ (516℃ in previous study)
- The maximum difference of the temperature in the beam window was 27 ℃ (55℃ in previous study)

Structural analysis

- ANSYS code was employed
- Parametric survey was performed by changing the thickness (1-4 mm) of beam window.
- Approximate value derived from the following equation was used.

$$T(t) = T_O + Q(r) \left(\frac{t_0^2}{2}\right) \left(1 - \left(\frac{t}{t_0}\right)^2\right) / \lambda$$

T: Temperature at thickness t, To: Temperature at outer surface Q(r): Heat generation density at r, t_0 : Thickness

λ: Thermal conductivity

- Maximum temperature was less than 500℃ even if t=4 mm
- Von Mises stresses of all cases satisfied the criteria 3Sm
- The buckling pressure with 4 mm thickness was 3.6 times larger than the value with 2 mm thickness
 - → Non-liner buckling analysis is required as the future work

Summary

	Previous study	This study
Proton beam energy [GeV]	1.5	←
Proton beam current [mA]	20	10
Number of SAR	-	3
Beam duct radius [mm]	235	←
Shape of beam window	Ellipse	Hemispherical
Thickness of beam window at top [mm]	2.0	4.0
Buckling pressure	4.1 [MPa]*	More than 3.6 times larger**

*: by non-liner buckling analysis

**: by liner buckling analysis

Concluding remarks

- To realize the small burnup reactivity, subcriticality adjustment rod (SAR) is introduced to the ADS.
- Maximum proton beam current was reduced from 20 to 10 mA by the use of 3 SARs.
- Through the coupling analyses, more feasible beam window concept (hemispherical shape, 4 mm thickness) was presented.

Acknowledgement

A part of this study is the result of "Research and development to solve the engineering issues for transmutation system using accelerator-driven system" carried out under the Innovative Nuclear Research and Development Program by the Ministry of Education, Culture, Sports, Science and Technology of Japan