Experimental Benchmarks on Accelerator-Driven System at Kyoto University Critical Assembly

Song Hyun Kim, Masao Yamanaka and Cheol Ho Pyeon
Research Reactor Institute, Kyoto University, Japan
Background

- The original concept of ADS for transmuting MA and LLFP, and for producing energy
- ADS research activities in Japan (Nuclear transmutation and Energy amplifier system)
 - KURRI: ADS experiments with KUCA+FFAG accelerator (100 MeV protons)
 - JAEA: TEF facilities in J-PARC
- Outline and Roadmap of ADS study in KURRI
 - Focus on analyses of reaction rates and subcriticality using KUCA core
 - Deterministic methodology for ADS experiments

Purpose

- Conduct feasibility study on ADS, relating nuclear transmutation
- Investigate neutron characteristics of ADS through the experiments and the accuracy of numerical (MCNP) analyses
Roadmap of ADS for nuclear transmutation

- **Power**
 - MYRRHA in Belgium
 - ~2.4 MW-beam, 50~100 MWth
 - Demonstration of ADS tech.
 - Fuel irradiation
 - TEF of J-PARC in Japan
 - Pb-Bi target exp.
 - Reactor physics exp. (MA in kg order)
 - R&D of basic and eng.
- **Demonstration**
 - Actual ADS plant
 - 30 MW-beam, 800 MWth
 - MA nucl. trans. of 10 LWR plants
 - R&D of
 - Reactor physics of MA fuel
 - Target materials
- **Principle**
 - KUCA-FFAG: Reactor Physics Exp.
 - High-reliability of accelerator
 - Control of subcriticality
 - Removal system of heat decay

Roadmap of ADS for nuclear transmutation

- **2016**
 - Reactor Physics Exps. at KUCA
- **2020**
- **2025**
- **Future**

S. H. Kim, Kyoto Univ.
Experimental facilities in the world

Table: Specification of ADS facilities in the world

<table>
<thead>
<tr>
<th>Project or Facility</th>
<th>Country</th>
<th>Fuel</th>
<th>Reflector or Coolant</th>
<th>Spectrum</th>
<th>Accelerator (target)</th>
<th>Power</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUSE</td>
<td>France</td>
<td>MOX</td>
<td>Na</td>
<td>Fast</td>
<td>14 MeV – n</td>
<td>Zero</td>
<td>Finished</td>
</tr>
<tr>
<td>YALINA</td>
<td>Belarus</td>
<td>LEU</td>
<td>Solid metal</td>
<td>Fast & Thermal</td>
<td>14 MeV – n</td>
<td>Zero</td>
<td>Finished</td>
</tr>
<tr>
<td>VENUS-F</td>
<td>Belgium</td>
<td>LEU (MOX)</td>
<td>Pb</td>
<td>Fast</td>
<td>14 MeV – n</td>
<td>Zero</td>
<td>Being</td>
</tr>
<tr>
<td>KUCA</td>
<td>Japan</td>
<td>HEU</td>
<td>Polyethylene (Gr, Pb & Pb-Bi)</td>
<td>Thermal</td>
<td>14 MeV – n 100 MeV – p (W, Pb-Bi…)</td>
<td>Zero</td>
<td>Being</td>
</tr>
<tr>
<td>CLEAR-1</td>
<td>China</td>
<td>UO₂</td>
<td>Pb</td>
<td>Fast</td>
<td>14 MeV – n</td>
<td>Zero</td>
<td>Planned</td>
</tr>
<tr>
<td>TEF</td>
<td>Japan</td>
<td>LEU (Pu) + MA</td>
<td>Pb-Bi</td>
<td>Fast</td>
<td>400 MeV – p (Pb-Bi)</td>
<td>500 Wth</td>
<td>Planned</td>
</tr>
<tr>
<td>MYRRHA</td>
<td>Belgium</td>
<td>MOX + MA</td>
<td>Pb-Bi</td>
<td>Fast</td>
<td>600 MeV – p (Pb-Bi)</td>
<td>100 MWth</td>
<td>Planned</td>
</tr>
</tbody>
</table>
Main parameters in the FFAG accelerator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td># of sectors</td>
<td>12</td>
</tr>
<tr>
<td>Energy</td>
<td>100 MeV</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>20 Hz</td>
</tr>
<tr>
<td>Average beam current</td>
<td>1 nA</td>
</tr>
<tr>
<td>Width</td>
<td>50 ns</td>
</tr>
<tr>
<td>Field index</td>
<td>7.5</td>
</tr>
<tr>
<td>Closed orbit radius</td>
<td>4.4 - 5.3 m</td>
</tr>
</tbody>
</table>
ADS composition at KUCA

- **Beam line of D**
 - D + T target = 14 MeV neutrons

- **KUCA core**
 - T target

- **Beam line of protons**
 - 100 MeV protons + W target = Spallation neutrons

- **Pulsed neutron generator**
 - FFAG accelerator

EuCARD², CERN, Switzerland, 7-9 Feb. 2017
KUCA core (Solid-moderated core)

- KUCA core -
 A solid-moderated and reflected core

Fig. KUCA core

Fig. Image of KUCA core and fuel assembly loaded

Plates/Blocks: HEU, NU, Th, PE, Pb, Pb-Bi, Gr, Be

EuCARD², CERN, Switzerland, 7-9 Feb. 2017
\(^{235}\text{U}\)-loaded ADS with 14 MeV neutrons

\(^{235}\text{U}\)-loaded ADS experiments with 14 MeV neutrons (IAEA ADS CRP in 2007 to 2011)

- Subcriticality measurements
- Neutron spectrum (Activation foils)
- Reaction rates (M and k-source)

235U-loaded ADS with 100 MeV protons

235U-loaded ADS experiments with 100 MeV protons

(IAEA ADS CW from 2016 to 2019)

Experiment Overview

Investigation of Effect of Target in ADS

Proton Beam Target Spallation Neutron

W Pb-Bi Be W

<table>
<thead>
<tr>
<th>Target</th>
<th>Diameter (mm)</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>50.0</td>
<td>12.0</td>
</tr>
<tr>
<td>W-Be</td>
<td>50.0</td>
<td>12.0; Be: 10.0</td>
</tr>
<tr>
<td>Pb-Bi</td>
<td>50.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>
S. H. Kim, Kyoto Univ.

11

EuCARD2, CERN, Switzerland, 7-9 Feb. 2017

S. H. Kim, Kyoto Univ. 11

Fig. Neutron spectrum of injection of 100 MeV protons into heavy metal target (MCNP)

- Spectrum of spallation neutrons (100 MeV proton injection)
 - W, W-Be and Pb-Bi targets
 - Almost same

- Very unique peak ranging between 85 and 100 MeV neutrons with W-Be Target (for 100 MeV proton injection)

- How about influences on neutron characteristics in the core?

Fig. Comparison between neutron spectra of W and W-Be targets (MCNP)
Static: Neutron multiplication

Fig. Core configuration of ^{235}U-PE core (100 MeV protons)

Table Comparison between measured and calculated M values (Subcritical level: 2,657 pcm)

<table>
<thead>
<tr>
<th>Target</th>
<th>Calculation</th>
<th>Experiment</th>
<th>C/E value</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>1.73 \pm 0.01</td>
<td>1.85 \pm 0.02</td>
<td>0.93 \pm 0.01</td>
</tr>
<tr>
<td>W-Be</td>
<td>2.29 \pm 0.01</td>
<td>2.36 \pm 0.03</td>
<td>0.97 \pm 0.01</td>
</tr>
<tr>
<td>Pb-Bi</td>
<td>1.95 \pm 0.01</td>
<td>1.94 \pm 0.02</td>
<td>1.01 \pm 0.01</td>
</tr>
</tbody>
</table>

Fig. Measured reaction rate distribution (M and k-source study)
232Th-loaded ADS experiments with 14 MeV neutrons or 100 MeV protons

(IAEA ADS CW from 2013 and 2014)

Exp. benchmarks on Th-loaded ADS

Fig. Proportionality of X secs. of 232Th and 115In in thermal neutron range

- **Measurement (Foil activation method)**

 ➢ **Source:**

 14 MeV neutrons \rightarrow 93Nb(n, 2n)92mNb

 (9 MeV threshold)

 100 MeV protons \rightarrow 115In(n, n$'$)115mIn

 (0.3 MeV threshold)

 ➢ **Core:** In capture (~ Th capture; Proportionality)

 \rightarrow 115In(n, γ)116mIn reactions

EuCARD2, CERN, Switzerland, 7-9 Feb. 2017
Profile on ^{232}Th capture reaction rates

![Diagram of core configuration](image1.png)

(a) ^{232}Th-loaded core with 14 MeV neutrons

![Diagram of core configuration](image2.png)

(b) ^{232}Th-loaded core with 100 MeV protons (W target)

EuCARD2, CERN, Switzerland, 7-9 Feb. 2017

![Comparison of neutron spectra](image3.png)

Fig. Comparison of neutron spectra

Fig. Core configuration of ^{232}Th-loaded core

Fig. Measured $^{115}\text{In} (n, \gamma)^{116m}\text{In}$ reaction rates

(14 MeV neutrons vs. 100 MeV protons with W target)
Kinetic parameters (232Th-loaded ADS)

Detector #1

Fig. Time evolution of PNS method
(14 MeV neutrons vs. 100 MeV protons with W target)

Detector #1

Fig. Noise data by Feynman-α method
(14 MeV neutrons vs. 100 MeV protons with W target)

Fig. Comparison between a value by PNS and Feynman-α methods
(14 MeV neutrons vs. 100 MeV protons with W target)

Discussion issues

- Detector position dependency
- Neutron spectrum (External Source)
- Subcriticality measurement methods

Solid Pb-Bi Study
(collaboration with KUCA and JAEA)

Motivation

- Discrepancy between JENDL-3.3 and JENDL-4.0 of Pb-Bi x-sec. through numerical simulations of JAEA ADS model (Pb-Bi coolant model)

EuCARD², CERN, Switzerland, 7-9 Feb. 2017
Uncertainties of Pb-Bi x-sec

Motivation
- Discrepancy between JENDL-3.3 and JENDL-4.0 of Pb-Bi x-sec. through numerical simulations of JAEA ADS model (Pb-Bi coolant model)

Experiments at KUCA (critical state)
- Sample worth (reactivity) of Pb plate in the critical state

Table Sample reactivity (C/E value) of Pb plates

<table>
<thead>
<tr>
<th>Reactivity (pcm)</th>
<th>JENDL-3.3</th>
<th>JENDL-4.0</th>
<th>ENDF/B-VII.0</th>
<th>JEFF-3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>94 ±7</td>
<td>1.63±0.13</td>
<td>1.13±0.10</td>
<td>0.79±0.08</td>
<td>0.89±0.09</td>
</tr>
<tr>
<td>110 ±6</td>
<td>1.53±0.10</td>
<td>1.07±0.08</td>
<td>0.85±0.07</td>
<td>0.97±0.07</td>
</tr>
<tr>
<td>145 ±6</td>
<td>1.65±0.08</td>
<td>1.12±0.06</td>
<td>0.94±0.05</td>
<td>1.00±0.05</td>
</tr>
<tr>
<td>156 ±7</td>
<td>1.76±0.08</td>
<td>1.13±0.06</td>
<td>0.94±0.05</td>
<td>0.98±0.05</td>
</tr>
</tbody>
</table>

Upcoming experiments (Successive investigation)
- Sample worth of Bi and Pb-Bi plates in the critical state
MA irradiation in ADS (on Oct. 2017)

Experimental settings

- 235U and Pb-Bi zoned core
- 100 MeV protons and Pb-Bi target
- Back-To-Back Type Fission Chamber (BTB fission chamber)
- MA sample (237Np and 241Am)
 - 237Np: Capture and fission
 - 241Am: Fission
- Reference: 235U, 238U or 197Au

Fig. Core configuration of 235U and Pb-Bi zoned core

Fig. Neutron spectrum of core center in F’ at 100 MeV proton injection onto Pb-Bi target
Summary

- **Current status**
 - **ADS research project in Kyoto Univ. Research Reactor Institute**
 - Application of ADS with high-energy protons to nuclear transmutation and energy amplifier system
 - **Current status on ADS in the world**
 - Outline and roadmap of ADS
 - Research activities in Japan (JAEA and KURRI)
 - **At KUCA, 235U- and 232Th-loaded ADS experiments**
 - Feasibility study on ADS with 235U-loaded core and external sources
 - Preliminary study on 232Th fission and capture reaction rates

- **Future plans**
 - Uncertainty analyses of Pb-Bi X-sec.
 - MA irradiation at ADS with 100 MeV protons (Pb-Bi target)
 - Analyses of 237Np and 241Am reaction rates
 - Online monitoring of subcriticality by the PNS and Noise methods
Thank You for Your Attention