

The ESS target design and beam raster system

Rikard Linander Deputy Head of Target Division

www.europeanspallationsource.se 7 February, 2017

Outline

- Introduction to the European Spallation Source
- Technical design solutions
 - Rotating tungsten target
 - Target helium cooling
 - Proton beam expansion by raster scanning magnet system
- Raster scanning effects on neutron output
- Concluding remarks

Introduction to the European Spallation Source

European Spallation Source basics

High Power Accelerator: Energy: 2 GeV Rep. Rate: 14 Hz Current: 62.5 mA Pulse length: 2.86 ms Target Station: He-gas cooled rotating W-target Average power: 5 MW Pulse power: 125 MW Neutron beam ports: 42

High brightness and tunable resolution makes new measurements possible

Proton Source

Construction site areal photo, Dec 2016

Target Station High Level Functions

- Generate neutrons via nuclear spallation using protons from the accelerator
- Slow the neutrons to speeds useful for neutron scattering Direct neutrons to neutron scattering instruments High bay 22 m Safe, reliable operation with high 130 m availability 37 m Target Utilities Transport hall Beam expander hall monolith

Active cells

block

Target monolith and its internals

- The proton beam
 - Enters the monolith through a beam pipe
 - Passes through a proton beam window made of aluminum
 - Strikes the rim of the target wheel
 - Induces spallation reactions within the tungsten target material, producing copious neutrons
- The neutrons
 - Leak from the target wheel
 - Scatter into moderators filled with water and liquid hydrogen
 - Down-scatter to low energies
 - Leak through neutron beam extraction ports that direct them to neutron scattering instruments
- Monolith is filled with 3000 tons of steel to shield high-energy neutrons from escaping

Rotating tungsten target

ESS will be the first spallation source to employ a helium-cooled rotating target

- Motor and bearings are mounted far away (5 meters) from the high radiation zone
- Wheel is suspended on a 6 meter long shaft
- Wheel contains 3 tons of tungsten
- Wheel+shaft total mass is 11 tons
- Helium removes 3 MW of heat deposited in the target by the 5-MW proton beam
- Expected lifetime of 5 years

Target wheel rotation scheme

- Target wheel has 36 sectors of 10° each
- The beam pulse is 2.86 ms wide, and pulses 14 times per second
- Wheel rotation is synchronized with the beam pulse
- Wheel rotational speed is 14 Hz/36 = 0.39 Hz, or 10° rotation between each pulse

FUROPFAN

Rotating targets for spallation sources are not a new concept

- Main advantages:
 - Can accommodate high beam powers
 - If properly designed, decay heat can be removed passively
 - Long life
- Main drawbacks:
 - Large, heavy,
 expensive target
 - Components beneath the target wheel are difficult to extract

Prototype rotating target from the 1980s-era German SNQ project (Forschungszentrum Jülich)

FUROPFAN

Each 10° sector is loaded with a tungstenfilled cassette

- Tungsten depth in the proton beam direction is 45 cm
- The range of a 2-GeV proton in tungsten is 74 cm

• Helium flows

Proton

- radially outward above and below the cassette,
- reverses direction at the wheel rim,
- and returns through the tungsten

Brick dimensions: 10 W x 30 D x 80 H mm³ Idiz ODADA 23C IA 190 bricks per sector, 6840 bricks in total Manufacturing is straightforward ۲ W bricks Tungsten bricks Dummy bricks Helium flow Proton beam 13

The target wheel is loaded with 3 tons of tungsten bricks

Tungsten bricks are held in place by stainless steel 316L cassettes

- Tungsten is not bonded to the stainless steel
- Allows free thermal expansion in all three directions
- Cassettes maintain 2-mm coolant channels between bricks
- Chamfered ridges allow bricks to self-center, easing assembly

EUROPEAN SPALL SOURCE

The biggest hazard to the public is the radionuclide inventory in the tungsten target

- If this inventory were released, the dose to the most exposed members of the public would exceed permissible limits
- Three energy sources can disperse this inventory:
 - Abnormal heating by the proton beam
 → Addressed by a highly reliable Target Safety System
 - − Nearly 40 kW of decay heat in the target wheel
 → Designed for completely passive decay heat removal
 - − Large inventory of liquid hydrogen next to the target
 → Deflagration or detonation does not heat the target

W bricks irradiated at ISOLDE used to measure release of volatile radionuclides

Chamber for proton irradiation of tungsten bricks at ISOLDE

EUROPEAN SPALLATION SOURCE

DTU Nutech Center for Nuclear Technologies

Tritium and ¹²⁵I releases during heating to source the irradiated tungsten block

Target helium cooling

ESS will be the first high-power spallation target cooled by helium

- 3 MW cooling capacity
- 30 kg helium inventory
- 3 kg/s flow rate
- 11 bar absolute pressure, 1.5 bar pressure drop
- 40°C inlet temperature, 240°C exit temperature
- Purification system removes contaminants
 - Full-flow filtration to 5 μm
 - 0.1% purification stream filtered to 0.5 μm
 - Getters in the purification stream remove hydrogen, halogens, and other trace elements
- Helium blowers will be oil-free turbo compressors

EUROPEAN

Rationale for the choice of helium as target coolant

- Advantages
 - Chemically inert gas with minimal cross-section for particle irradiation

EUROPEAN SPALLATION

- No need to clad the tungsten bricks
- Minimal production of radioisotopes
- Lower radioactivity in the loop components
- Less dose to workers
- No phase change issues
 - Avoiding cavitation
 - Less susceptible to over-heating and over-pressurization events
 - Much lower risk of tungsten-steam reactions
- Challenges
 - Leak-tightness
 - Design tradeoffs between operating pressure, pressure drop, system dimensions and power consumption
 - First of a kind application

Proton beam expansion by raster scanning magnet system

Issues to be addressed in the design of the accelerator-target interface

- Potential activation of beamline components from neutrons coming from the target
- Assuring the beam delivered to the target is within allowable limits
- Shielding nearby rooms and hallways from prompt radiation

EUROPEAN

Accelerator-target interface

Beam transport configuration upstream of the target

Hardware: Magnets + Support

EUROPEAN SPALLATION SOURCE

Profile monitor (wires + non-invasive)

Concept of beam expansion by raster magnet system

- Raster system sweeping beam in 2D pattern @ target
- 8 colinear magnets, individually powered
- Crosshatch pattern $(f_x/f_y, \phi_{xy}, a_x, a_y)$ within 2.86 ms pulse

EUROPEAN

SOURCE

A2T Beam Optics

EUROPEAN SPALLATION SOURCE

10 x RMS beamlet

Beam expander design exploits the high beam quality delivered by the linac

- Proton beam has very low transverse emittance
 - Delivered directly from the linac no ring!
- Desirable features of raster beam expansion
 - Sharpness of the beam footprint on target is adjustable
 - Ability to incorporate a beam crossover where the beam is small
 - Long drift from the crossover to the target
 - Near uniform current density over a good fraction of the beam footprint on target
 - Beam size and distribution is relatively insensitive to the beam tune

Raster scanning effects on neutron output

Raster Pulse: Alternating Parity

Vertical Position [cm]

2.5

0.0

-2.5

-5.0

-7.5

-5.0

-2.5

0.0

2.5

5.0

7.5

0.8 Å neutron pulse produced by thermal (a) moderator from a single rastered pulse.

Concluding remarks

Concluding remarks

- Construction of ESS is well underway
- Key components and systems are currently designed and manufactured
 - High power rotating tungsten target
 - Target helium cooling system
 - Raster scanning magnet system for beam expansion
- In parallel to high performance goal priority is to make provisions for a safe, stable and reliable operation

Extra slides

Target safety becomes ever more important with increasing beam power

EUROPEAN

- Following beam shutdown, target decay heat removal must be robust and highly reliable
 - Passive decay heat removal is best
- Good practice: adopt the safety approach developed for nuclear facilities
 - Identify and assess the hazards
 - Those hazards with severe consequences and high frequency undergo detailed design basis accident (DBA) analysis
 - Controls identified to mitigate the likelihood or consequence of a DBA are deemed "credited controls," which must meet a higher standard in quality and pedigree

A "safety by design" philosophy should be adopted at an early stage of target design

EUROPEAN SPALLATION SOURCE

- Safety of the public and of workers should be an important factor when making design choices
- Hierarchy:
 - **1. Passive safety features**

Easiest to defend to regulators Normally the least-cost option

2. Engineered controls

Active safety systems with an established pedigree Should be simple in concept, implementation and operation

3. Administrative controls

Relies on established processes and procedures Typically involves high operational overhead Subject to human error

RSM Failure?

Figure of merit:

- Peak current density (J_{max}) on target

EUROPEAN SPALLATION SOURCE

150

Beam outside nominal footprint regions

