The ESS target design and beam raster system

Rikard Linander
Deputy Head of Target Division

www.europeanspallationsource.se
7 February, 2017
Outline

• Introduction to the European Spallation Source
• Technical design solutions
 – Rotating tungsten target
 – Target helium cooling
 – Proton beam expansion by raster scanning magnet system
• Raster scanning effects on neutron output
• Concluding remarks
Introduction to the European Spallation Source
European Spallation Source basics

High Power Accelerator:
- Energy: 2 GeV
- Rep. Rate: 14 Hz
- Current: 62.5 mA
- Pulse length: 2.86 ms

Target Station:
- He-gas cooled rotating W-target
- Average power: 5 MW
- Pulse power: 125 MW
- Neutron beam ports: 42

High brightness and tunable resolution makes new measurements possible.
Target Station High Level Functions

- Generate neutrons via nuclear spallation using protons from the accelerator
- Slow the neutrons to speeds useful for neutron scattering
- Direct neutrons to neutron scattering instruments
- Safe, reliable operation with high availability
Target monolith and its internals

- **The proton beam**
 - Enters the monolith through a beam pipe
 - Passes through a proton beam window made of aluminum
 - Strikes the rim of the target wheel
 - Induces spallation reactions within the tungsten target material, producing copious neutrons

- **The neutrons**
 - Leak from the target wheel
 - Scatter into moderators filled with water and liquid hydrogen
 - Down-scatter to low energies
 - Leak through neutron beam extraction ports that direct them to neutron scattering instruments

- **Monolith is filled with 3000 tons of steel to shield high-energy neutrons from escaping**
Rotating tungsten target
ESS will be the first spallation source to employ a helium-cooled rotating target

- Motor and bearings are mounted far away (5 meters) from the high radiation zone
- Wheel is suspended on a 6 meter long shaft
- Wheel contains 3 tons of tungsten
- Wheel+shaft total mass is 11 tons
- Helium removes 3 MW of heat deposited in the target by the 5-MW proton beam
- Expected lifetime of 5 years
Target wheel rotation scheme

- Target wheel has 36 sectors of 10° each
- The beam pulse is 2.86 ms wide, and pulses 14 times per second
- Wheel rotation is synchronized with the beam pulse
- Wheel rotational speed is 14 Hz/36 = 0.39 Hz, or 10° rotation between each pulse
Rotating targets for spallation sources are not a new concept

- **Main advantages:**
 - Can accommodate high beam powers
 - If properly designed, decay heat can be removed passively
 - Long life
- **Main drawbacks:**
 - Large, heavy, expensive target
 - Components beneath the target wheel are difficult to extract
Each 10° sector is loaded with a tungsten-filled cassette

- Tungsten depth in the proton beam direction is 45 cm
- The range of a 2-GeV proton in tungsten is 74 cm

- Helium flows
 - radially outward above and below the cassette,
 - reverses direction at the wheel rim,
 - and returns through the tungsten
The target wheel is loaded with 3 tons of tungsten bricks

- Brick dimensions: 10 W x 30 D x 80 H mm³
- 190 bricks per sector, 6840 bricks in total
- Manufacturing is straightforward
Tungsten bricks are held in place by stainless steel 316L cassettes

- Tungsten is not bonded to the stainless steel
- Allows free thermal expansion in all three directions
- Cassettes maintain 2-mm coolant channels between bricks
- Chamfered ridges allow bricks to self-center, easing assembly
The biggest hazard to the public is the radionuclide inventory in the tungsten target

• If this inventory were released, the dose to the most exposed members of the public would exceed permissible limits

• Three energy sources can disperse this inventory:
 – Abnormal heating by the proton beam
 → *Addressed by a highly reliable Target Safety System*
 – Nearly 40 kW of decay heat in the target wheel
 → *Designed for completely passive decay heat removal*
 – Large inventory of liquid hydrogen next to the target
 → *Deflagration or detonation does not heat the target*
W bricks irradiated at ISOLDE used to measure release of volatile radionuclides

- 1.5 GeV protons
- 2 µA
- 24 h irradiation
- Total 1E18 protons

Recoil monitor aluminium foil

Heating to measure released I and Br

Dissolution to measure total I and Br
Chamber for proton irradiation of tungsten bricks at ISOLDE
Tritium and 125I releases during heating the irradiated tungsten block

- By heating, large amount of tritium was released from the irradiated tungsten, up to 1.8 MBq/h HTO was measured at 950°C.
- 125I was released from the irradiated tungsten in a very small rate (<0.22 Bq/h) even at 1000°C.
- Analysis is ongoing

Courtesy of
Xiaolin Hou
Mikael Jensen
Sven P. Nielsen

DTU Nutech
Center for Nuclear Technologies
Target helium cooling
ESS will be the first high-power spallation target cooled by helium

- 3 MW cooling capacity
- 30 kg helium inventory
- 3 kg/s flow rate
- 11 bar absolute pressure, 1.5 bar pressure drop
- 40°C inlet temperature, 240°C exit temperature
- Purification system removes contaminants
 - Full-flow filtration to 5 µm
 - 0.1% purification stream filtered to 0.5 µm
 - Getters in the purification stream remove hydrogen, halogens, and other trace elements
- Helium blowers will be oil-free turbo compressors
Rationale for the choice of helium as target coolant

• Advantages
 – Chemically inert gas with minimal cross-section for particle irradiation
 • No need to clad the tungsten bricks
 • Minimal production of radioisotopes
 • Lower radioactivity in the loop components
 • Less dose to workers
 – No phase change issues
 • Avoiding cavitation
 • Less susceptible to over-heating and over-pressurization events
 • Much lower risk of tungsten-steam reactions

• Challenges
 – Leak-tightness
 – Design tradeoffs between operating pressure, pressure drop, system dimensions and power consumption
 – First of a kind application
Proton beam expansion by raster scanning magnet system
Issues to be addressed in the design of the accelerator-target interface

- Beam expansion and delivery to the target
- Potential activation of beamline components from neutrons coming from the target
- Assuring the beam delivered to the target is within allowable limits
- Shielding nearby rooms and hallways from prompt radiation
Accelerator-target interface

Region of interest
Beam transport configuration upstream of the target

- Dogleg
- Dipole
- Raster magnets
- Quads
- Neutron shield wall
- Monolith

Dogleg elevates the beam by 4.4 m

Monolith
Hardware: Magnets + Support
Profile monitor (wires + non-invasive)
Concept of beam expansion by raster magnet system

- Raster system sweeping beam in 2D pattern @ target
- 8 colinear magnets, individually powered
- Crosshatch pattern \((f_x/f_y, \phi_{xy}, a_x, a_y) \) within 2.86 ms pulse
A2T Beam Optics

2.0 GeV: $B_x L = \pm 2.6 \text{ mT.m}$, $B_y L = \pm 1.5 \text{ mT.m}$, $\pm 5 \text{ mT.m}$
Beam expander design exploits the high beam quality delivered by the linac

- Proton beam has very low transverse emittance
 - Delivered directly from the linac – no ring!
- Desirable features of raster beam expansion
 - Sharpness of the beam footprint on target is adjustable
 - Ability to incorporate a beam crossover where the beam is small
 - Long drift from the crossover to the target
 - Near uniform current density over a good fraction of the beam footprint on target
 - Beam size and distribution is relatively insensitive to the beam tune
Raster scanning effects on neutron output
Raster Pulse: Alternating Parity
Shea et al, ICANS’15

(a) 0.8 Å neutron pulse produced by thermal moderator from a single rastered pulse.

(a) From single neutron pulse.

(b) From average over direct and inverted pulse.
Concluding remarks
Concluding remarks

• Construction of ESS is well underway
• Key components and systems are currently designed and manufactured
 – High power rotating tungsten target
 – Target helium cooling system
 – Raster scanning magnet system for beam expansion
• In parallel to high performance goal priority is to make provisions for a safe, stable and reliable operation
Extra slides
Target safety becomes ever more important with increasing beam power

- Radionuclide inventory in a 1-MW target is roughly on par with that of a 100-kW fission reactor
- Following beam shutdown, target decay heat removal must be robust and highly reliable
 - Passive decay heat removal is best
- Good practice: adopt the safety approach developed for nuclear facilities
 - Identify and assess the hazards
 - Those hazards with severe consequences and high frequency undergo detailed design basis accident (DBA) analysis
 - Controls identified to mitigate the likelihood or consequence of a DBA are deemed “credited controls,” which must meet a higher standard in quality and pedigree
A “safety by design” philosophy should be adopted at an early stage of target design

- Safety of the public and of workers should be an important factor when making design choices

- Hierarchy:

 1. **Passive safety features**
 - Easiest to defend to regulators
 - Normally the least-cost option

 2. **Engineered controls**
 - Active safety systems with an established pedigree
 - Should be simple in concept, implementation and operation

 3. **Administrative controls**
 - Relies on established processes and procedures
 - Typically involves high operational overhead
 - Subject to human error
RSM Failure?

Figure of merit:
- Peak current density (J_{max}) on target
- Beam outside nominal footprint regions

Nominal:
- $<J>_{\text{max}} = 53.3 \, \mu\text{A/cm}^2$

No rastering:
- $<J>_{\text{max}} = 562 \, \mu\text{A/cm}^2$

Loss of 1 H RSM:
- $<J>_{\text{max}} = 70.6 \, \mu\text{A/cm}^2$

50% smaller beam size:
- $<J>_{\text{max}} = 57.9 \, \mu\text{A/cm}^2$

50% larger beam size:
- $<J>_{\text{max}} = 52.6 \, \mu\text{A/cm}^2$