DE LA RECHERCHE À L'INDUSTRIE

OVERVIEW OF ACHIEVED COUPLING EXPERIMENTS ON ZERO-POWER FACILITIES

F. MELLIER

CEA/Nuclear Energy Division Cadarache, France

www.cea.fr

- Needs and interest for coupling experiments on ZPR
- Brief review of worldwide initiatives
- The very first tests (1994-1998) : FEAT, MUSE 1 & 2
- MUSE-3
- The MUSE-4 /GUINEVERE/FREYA suite
- The YALINA-B experiment
- Activities in KURRI/KUCA
- Others programs

Out of scope: experiments involving accelerators and heavy metal blankets (U, Pb, W, ...) (with the exception of FEAT)

Conclusions

And sorry for the oversights if any !

NEEDS & INTEREST FOR COUPLING EXPERIMENTS ON ZPR

Background

ADSs present many challenges

- accelerator,
- spallation module,
- subcritical core, fuel and fuel cycle,
- operation, safety, licensing

Roadmap for developing ADSs in EU

A European Roadmap for Developing Accelerator Driven Systems (ADS) for Nuclear Waste Incineration

April 2001

The European Technical Working Group on ADS

NEEDS & INTEREST FOR COUPLING EXPERIMENTS ON ZPR

Interest of zero power facilities

Flexibility

- many cores arrangements possible
- moving from one configuration to another needs some days/weeks

Very low power

- absence of thermal effects
- no consumption of fuel
- no major radioprotection issues
- no build-up of fission products
- no pressurized fluid circuits

Limited maintenance and operating costs

- → easy to instrument (the fissile zones too)
- → wide range of measurements
- → <u>appropriate for validation</u> of both nuclear data and calculation methods
- → also relevant for evaluation of new experimental techniques and analysis methods

DE LA RECHERCHE À L'INDUSTRIE

NEEDS & INTEREST FOR COUPLING EXPERIMENTS ON ZPR

Main physics concerns of ADSs that can be addressed on ZPRs

Proton beam/Spallation target device

- properties of radiation fields around the target depending on the beam energy, the materials of the target (Pb, Pb-Bi, W, Ta, U), its geometry, ...

Coupling of external neutron source with the subcritical core

- spatial and energy distribution of neutrons into the core,
- time evolution of neutron population depending on the position
- source importance as a function of neutron energies, source position, ...

Safe operating of the system

- reactivity calibration at core loading and beginning of cycle
- monitoring of the reactivity during operation

Improvement of nuclear data (neutron cross sections > 20 MeV)

- reaction rate distribution

Evaluation/validation of calculation methods

- benchmarking on codes and ND libraries

DE LA RECHERCHE À L'INDUSTRI

BRIEF REVIEW OF INITIATIVES WORLD-WIDE

DE LA RECHERCHE À L'INDUSTRIE

Cea

BRIEF REVIEW OF INITIATIVES WORLD-WIDE

BRIEF REVIEW OF INITIATIVES WORLD-WIDE

Opportunity study / Project outline

- Czech Republic: Proposal for a molten fluoride salt experimental loop in the LR-0 research reactor and further coupling with protons and a W target (LA-0 project, mid 1990s)
- Russia: Proposal of an ADS stand of ~5 MWth using INR linear proton accelerator (300-600 MeV, some 100 μ A), W or Pb-bi targets, LEU, (early 2010s)
- United Kingdom: Reconversion of CONSORT reactor (100 kW) in an experimental subcritical facility (early 2010s)

Schematic drawing of the subcritical driven core

CONSORT reactor

BRIEF REVIEW OF INITIATIVES WORLD-WIDE

Opportunity study / Project outline

- Brazil:

Sketch of a National ADS R&D Program (early 2000s)

View of IPEN-MB-01 core

Idea of coupling IPEN-MB 01 critical assembly with

1- a D-D/D-T neutron generator developed by Lawrence Berkeley National Laboratory)

2- a cyclotron (IPEN CV-28) delivering 24 MeV protons impinging a Be target

Conceptual design of a lead subcritical core using U/Th fuel

View of IPEN CV-28

Large project stopped prematurely

Italy / TRADE plus Russia / SAD USA / RACE-HP

Intermediate power coupling experiments Necessary for gaining experience with the operating of ADSs

Core powers in the range 20 – 100 kW for all

k_{eff} ranging from 0,95 to 0,99

Abandoned by lack of funding

BRIEF REVIEW OF INITIATIVES WORLD-WIDE

Project stopped prematurely

- Italy / TRADE plus project (2001 - 2005 / FP6 IP-Eurotrans)

- 150 MeV protons (cyclotron) (0.1 mA beam current)
- Ta target
- EXISTING thermal core (ENEA RC-1 TRIGA reactor)

- Pre-TRADE experiments achieved using Am-Be source and D-D/D-T generator (2004-2006)

Project stopped prematurely

- Russia / SAD project (2000 2006 / ISTC#2267 + support of EU partners)
 - EXISTING 660 MeV protons from JINR-Dubna phasotron (some μA)
 - Pb target (air cooled)
 - fast subcritical core (MOX fuel),

SAD closest system from power ADS

Dubna proton accelerator

k _{eff}	~0,95
Fuel loading	< 420 kg
Fission power	27,6 kW
Cooling	air
Core	
Coolant flow rate, G	~ 0,6 kg/s
velocity, v	10 m/s
Presure, P (inlet)	0,12-0,135 MPa
Temperature, T (inlet, outlet)	50/96 °C
Target (Pb)	
Coolant flow rate, G	~ 0,0067 kg/s
Velocity, v	50 m/s
Pressure, P (inlet)	0,12-0,135 MPa
Temperature, T (inlet, outlet)	50/125 °C

SAD Basic data

Cez

BRIEF REVIEW OF INITIATIVES WORLD-WIDE

Project stopped prematurely

- USA / RACE-HP (High power) (2003 - 2007 / AFCI + Mou IP-Eurotrans)

IAC full core configuration

- zero power experiments achieved at ISU-IAC (RACE-LP). Main outcome: PNS techniques are applicable with an e⁻ LINAC
- very preliminary experiments at UT-NETL at low core power
- (< 100 W) (many operationnal problems to solve)

- EXISTING 20 MeV electrons (portable LINAC) (80-100 mA beam current => 2 kW max.)
- Prototype W-Cu target (water cooled)
- EXISTING thermal cores (UT NETL & TAMU TRIGA) reactors

LINAC in place at UT NETL TRIGA

Low power experiments completed

	Country	Project	Period	Facility	Operator	Type of facility	Core	Neutron source
☆	Belarus	Yalina-Thermal	2000 - 2005	YALINA	JIPNR	Subcritical assembly (keff < 0,98)	Thermal	252Cf, Am-Be,
		Yalina-Booster	2005 - 2008				Fast/Thermal	D-D/D-T generator (NG-12-1)
	Belgium	GUINEVERE, FREYA	2006 - 2016	VENUS-F	SCK	Zero power critical assembly	Fast	Am-Be, D-D/D-T generator (GENEPI 3C)
	Brazil	-	2014	IPEN-MB-01	IPEN	Zero power critical assembly	Thermal	Am-Be
	China	NBRPC	2005 -	VENUS-1	CIAE	Subcritical assembly (keff < 0,98)	Fast/Thermal	²⁵² Cf, Am-Be, D-D/D-T generator (CIAE PNG)
	France	MUSE-1	1995	MASURCA	CEA	Zero power critical assembly	Fast	²⁵² Cf
		MUSE-2	1996					²⁵² Cf
		MUSE-3	1998					D-T generator (Sodern Genie 26)
		MUSE-4	1999 - 2004					D-D/D-T generator (GENEPI 1)
\$	India	-	2013 -	PURMINA BRAHMMA	BARC	Subcritical assembly (keff ~ 0,85 - 0,9)	Thermal	D-D/D-T generator (BARC PNG)
	Italy	TRADE phase I (RACE-T)	2004 - 2006	ENEA RC-1	ENEA	TRIGA (1 MW MarkII)	Thermal	²⁵² Cf
								Commercial D-T generator
	Japan	FCA XX1-1	2001	FCA	JAEA	Zero power critical assembly	Fast	²⁵² Cf + W test zone
	Japan	KART, Lab project	2002 -	KUCA	KURRI	Zero power critical assembly	Thermal	D-D/D-Tgenerator
								100 MeV protons / W target
	USA	USA RACE 20	2004 - 2007	ISU subcritical assembly	ISU-IAC,	Subcritical assembly (keff ~0,90)	Thermal	20-25 MeV electrons (LINAC) +
				UT NETL TAMU	TRIGA (1 MW Mark II)	Thermal	W-Cu target	

- The very first tests : FEAT, MUSE-1 & 2
- MUSE-3
- The MUSE-4/GUINEVERE/FREYA suite
- The YALINA-B experiment
- Activities IN KURRI/KUCA
- Others programs

DE LA RECHERCHE À L'INDUSTRI

THE BEGINNINGS : FEAT, MUSE-1/2

FEAT : First Energy Amplifier Test (1994 / CERN)

- Objectives:
 - Study the Energy gain as a function of proton energy
 - Validate Monte Carlo simulation

- Set-up:

- 3.5 tons of U_{nat} immerged in water
- $k\infty = 0.97$, $k_{source} \sim 0.91$
- Proton beam from CERN PS accelerator
- Proton energy in the range 0.5 3 GeV, 10⁸ p/s

THE BEGINNINGS : FEAT, MUSE-1/2

FEAT : First Energy Amplifier Test (1994 / CERN)

- Objectives :

- Study of the ratio "Energy produced in the device / Beam energy" (Energy gain as a function of proton energy)
- Monte Carlo code validation

- Main results

- Optimum proton energy at ~900 MeV
- Phenomena well predicted by MC simulation

S. Andriamonje & al., "Experimental determination of the energy generated in nuclear cascades by a high energy beam", Physics Letter B, Volume 348, Issues 3-4, 6 April 1995, Pages 697-709

THE BEGINNINGS : FEAT, MUSE-1/2/3

MUSE-1 & 2 : first parametric studies (1995-1996 / CEA+CNRS)

- Short tests (2 weeks & 2 months) taking advantages of fast cores loaded in the MASURCA facility at CEA /Cadarache for programs underway at that period (Mox fuel, Pu content ~24.5%)
- Neutron source = ²⁵²Cf (7.6 10⁷ & 6.1 10⁷ n/s) at <u>different axial positions (mid core plane</u>, +15 cm , +25 cm)
- <u>Two different diffusing materials</u> (sodium, steel) placed around the source
- Measurements of : reactivities (standard method used for critical reactors), ²³⁵U fission rate distributions, source importance

- <u>Main results</u>

- feasibility of measurements at deep subcritical levels confirmed
- demonstration the source effect/importance (more "peaked" distributions as expected)
- good agreement between calculations and experiments (deterministic and MC simulations)

MUSE-3 experiments (1998 / CEA+CNRS+EDF+FRAMATOME)

- Enlargment of collaboration between french institutes (GEDEON research network)
- Several subcritical cores ($k_{eff} = 0.995, 0.99, 0.985, 0.95$)
- Neutron source = SODERN genie 26 D-T pulse generator at core center (3, 10^8 n/s)
- Two different diffusing materials (sodium, lead) placed around the source

- Measurements of : reactivity (standard method, PNS/fit method), ²³⁵U fission rate distributions, source importance

- First Pulsed Neutron Source measurements and first difficulties with the analysis of data

Main outcome of the program

- need for a dedicated neutron generator with improved performances (in terms of quality of the pulse and source intensity)

→ GENEPI (GEnerator of NEutrons Pulsed & Intense)

- Designed and built by CNRS

MUSE-4 project (2000-2004 / Euratom FP5)

- international collaborations (FP 5 /12 partners; bilateral collaborations with DOE, PSI and JAERI)

- fast Mox core especially designed for the program (lead zone simulating a spallation target)

- horizontal beam line

- licencing of the experience more time consuming due to the presence of GENEPI and the physics of a coupled systems (first of a kind for our safety authorities)

- Five phases : critical, SC0 (0,994), SC2 (0,97), SC3 (0,97), SC3 Na/Pb (0,965)

- extensive characterization of the cores
 - not only ²³⁵U fission rate distributions; also : ²³²Th,²³⁸U, ²³⁷Np, ^{239, 240, 242}Pu, ²⁴¹Am ..., a number of dosimeters , ...
 - measurement of kinetics parameters

MUSE-4 project (2000-2004 / Euratom FP5)

- much time and effort devoted to the reactivity control issue (without a priori for their applicability)

	Nature of neutron source		Analysis method	Experimental parameter	
		Reference method (rod drop + Multiplication source method)		ρ\$	
	Core intrinsic source		Rossi-α method		
		Feynman-α method		α_{p}	
		AF	PSD and CPSD methods		
	252	Rossi-α method		α _p	
	Ct source	Source jerk method		ρ\$	
More than 10 methods		Area method		ρ\$	
		Slope fit methods (several kinetics models : one/two/three zones; one/two energy groups)		α _p	
	Pulsed	k _p method		k _ρ	
	<u>neutron</u> source	Rossi-α method			
		Feynman-α method	Deterministic way	α _p	
			Stochastic way		
		APSD and CPSD methods			
L		Frequency variation method		ρ\$	

MUSE-4 project (2000-2004 / Euratom FP5)

- several theoretical developments in support of analysis :
 - derivation of Feynman-a functions considering a pulsed source
 - development of a new kinetics model based on the neutron inter-generation lifetime distribution (the k_{promt} method),

S. Chabod & al., "Reactivity Measurement at GUINEVERE Facility Using the Integral kp Method, PHYSOR 2014, Kyoto, Japan, Sept. 28th–Oct. 3rd

Main outcome

- a proposal of strategy for the control and monitoring of the reactivity based on :

- PNS measurements for the control of reactivity at BOC (and a selection of most appropriate methods : area method, k_{prompt} method, fit methods),

- continuous monitoring of the beam current/flux ratio (monitoring of source to be implemented in next programs)

- intermediate cross checking, during operation, taking advantage of regular and short beam interruption)

New specifications for next external neutron source
Base for futur experimental program to be performed in FP 6 IP-EUROTRANS

GUINEVERE (2005-2010 / Euratom FP6 – IP Eurotrans)

- facing with abandoning of TRADE plus project, SCK-CEN proposed to host the continuation of MUSE-4 in the VENUS facility

- only preparatory work could be achieved during FP 6 time window:

- transformation of the VENUS facility (initially devoted to light water reactor studies) into a fast critical assembly VENUS-F

P. Baeten, "The GUINEVERE project at the VENUS-F facility", Proceedings of the International Conference on the Physics of Reactors - PHYSOR 2008, Interlaken, Switzerland

GUINEVERE (2005-2010 / Euratom FP6 – IP Eurotrans)

- facing with abandoning of TRADE plus project, SCK-CEN proposed to host the continuation of MUSE-4 in the VENUS facility

- only preparatory work could be achieved during FP 6 time window:
 - transformation of the VENUS facility (initially devoted to light water reactor studies) into a fast critical assembly VENUS-F
 - development of a new generator able to operate in continuous wave, pulsed and beam trip modes

Table 1: Beam specifications.		
Pulsed mode	Continuous mode	
Peak current: 40 mA	Mean current: 160 μA to 1 mA	
Repetition rate: 10 Hz to 5 kHz	Beam interruption rate: 0.1 to 100 Hz	
Pulse width: ~0.7 µs (FWHM)	Beam interruption duration: $\sim 20 \ \mu s$ to 10 ms	
Reproducibility: 1% pulse to pulse	Transition time on/off: ~1 μ s	

M. Baylac, "The GENEPIC-3C accelerator for the GUINEVERE project", International topical meeting on nuclear research applications and utilization of accelerators; Vienna (Austria); 4-8 May 2009

DE LA RECHERCHE À L'INDUSTR

THE MUSE-4/GUINEVERE/FREYA SUITE

GUINEVERE (2005-2010 / Euratom FP 6 – IP Eurotral

- facing with abandoning of TRADE plus project, SCK-CEN prop continuation of MUSE-4 in the VENUS facility

- only preparatory work could be achieved during FP 6:
 - transformation of the VENUS facility (initially devoted to light water reactor studies) into a fast critical assembly VENUS-F
 - development of a new generator able to operate in continuous wave, pulse and beam trip modes
 - design & building of a brand new core, preparation of safety file, licencing

- first criticality on february 2011
- experimental program to be conducted in next program (FREYA / FP 7)

FREYA (2011-2016 / Euratom FP7)

- better representativity of ADS : a full fast lead system (core+reflector) , an axial beam line, an external source allowing to operate in CW mode and with short beam interruptions, most of detectors out-core

- experimental program in the line of MUSE-4 and also taking into account the outcomes and lessons from YALINA-B

- extensive measurement program in the three modes (pulsed, CW, BT) of neutron generator

FREYA (2011-2016 / Euratom FP7)

- again much effort devoted to the reactivity calibration and monitoring issue
- most of detectors out of core

- results compared to a **robust reference** established in critical configuration (as it was also in MUSE-4)

J.L. Lecouey & al., "Estimate of the reactivity of the VENUS-F subcritical configuration using a Monte Carlo MSM method", Annals of Nuclear Energy 83 (2015) 65-75

- reactivity calibration:
 - □ confirmation of accuracy and robustness of area method
 - □ confirmation of potential of k_{prompt} method for <u>short time measurements</u>
- reactivity monitoring:
 - □ detailed and successfull analysis of beam trip experiments

T. Chevret, 'Mesure de la réactivité de réacteurs sous-critiques pilotés par accélérateur par l'analyse d'expériences d'interruptions de faisceau programmées", 2016, Thesis

DE LA RECHERCHE À L'INDUST

THE YALINA-BOOSTER EXPERIMENTS

YALINA ("spruce" in Belarus langage)

- subcritical facility (k_{eff} < 0,98),
- purpose : investigate the static and dynamics behaviour of ADS and properties of MA transmutation reactions
- ²⁵²Cf, Am-Be, D-D/D-T generator (up to 1,5 10¹² n/s with rotating TTi target device)
- first operation in the early 2000s

New configuration Yalina-Booster (2005-2006)

- more representative of ADS neutron spectrum (central fast zone)
- first experiments with beam trips (nevertheless polluted by electromagnetic interference)
- appreciation of reactivity measurement results accuracy remains difficult due to the lack of reference
- participation of IP EUROTRANS partners to the experiments and further analysis

V. Becares, Evaluation of reactivity monitoring techniques at the Yalina – Booster subcritical facility, 2014, Thesis

ACTIVITIES AT KUCA (KYOTO UNIVERSITY CRITICAL ASSEMBLY)

Critical facility (100 W max.)

- Enriched uranium core moderated and reflected by high density polythen (A core)

2002: launch of the KART project (five years) with the aim of

- Constructing of a FFAG (Fixed Field Alternating Gradient)
- Coupling it at KUCA A core
- First experiments with 14 Mev neutrons from D-T generator

Cockcroft-Walton type Accelerator

Fig. KUCA A-core with neutron guide EuCard², Status of ADS Research and Technology Development, CERN, 7-9 Feb. 2017 DE LA RECHERCHE À L'INDUSTRIE

ACTIVITIES AT KUCA (KYOTO UNIVERSITY CRITICAL ASSEMBLY)

Since : further studies with different spallation targets + D-T generator, various Th cells and fuel, several sucritical levels + critical states, different target positions, ..., <u>many publications</u>

DE LA RECHERCHE À L'INDUSTRI

OTHER PROGRAMS

BRAHMMA experimental facility (India/BARC, 2013)

- subcritical facility, Made in India D-T generator
- natural uranium core moderated by high density polythen + Be0 reflector
- series of PNS and source jerk experiments with keff in the range [0.89; 0.95]
- analysis with point kinetics without any added correction; few results published

Fig. 3. BRAHMMA subcritical core coupled with neutron generator.

- VENUS-1 experimental facility (China, 2005)
 - Subcritical facility (keff < 0.98)
 - Coupled fast/thermal zones, CH₂ reflector
 - CIAE Pulsed Neutron generator
 - first coupling in 2005, five keff
 - PNS experiment analysis work in 2007
 - PNS simulation work in 2011

EuCard², Status of ADS Research and Technology Development, CERN, 7-9 Feb. 2017

Programs that used only radioactive neutron sources

FCA XXI-1

- FCA (Fast Critical Assembly), similar to MASURCA, operated by JAEA
- FCA XXI-1 core devoted to investigations on measurement of deep subcritical levels
- ²⁵²Cf + W test zone at core center
- FCA design serves as a reference for TEF-P

Experiments at IPEN-MB-01

- Critical facility for light water cooled reactor studies

- Tests with an Am-Be neutron source for investigating a new experimental approach for the determination of subcritical levels using the 'generalized reactivity kinetic model' (A. Gandini & al., Journal of Nuclear Science and Technology 39 6 pp 673-686) EXPERIMENTS AND MANY OTHER THINGS

Extensive Monte Carlo simulations (much less in the early 90's)

- New approaches and kinetics models developed for the determination of subcritical levels (standard PK model is no more valid !)
- Much work on noise methods (ex : derivations of Feynman- α formulae considering PNS)

For more than 20 years, coupling experiments on ZPR have been motivating many teams worldwide,

- Different realizations (of unequal size) were carried out although some aspects (fuel and neutron spectrum in particular) were not always representative of a power ADS.
- Some experiments combining the three main components of ADS (high energy protons, a heavy metal target, a subcritical core) <u>could be achieved</u>
- The control and monitoring of reactivity is a shared key issue that concentrated most effort in EU initiatives and valuable progress have been made in this field (R&D conducted on this item is also relevant for critical reactors),

Further advances will need higher power experiments (core power of several tens/hundreds of kW). They remain a major objective.

Ce3

CONCLUSIONS

Next steps

- MYRTHE project in Belgium

- follow-up of FREYA in VENUS-F facility, next step forward MYRRHA
- funded by HORIZON 2020 EU Research and Innovation Program
- Commissioning of NSC KIPT ADS in Ukraine
- CLEAR-0 facility and associate experimental programs in China (more information in the upcoming presentation)

Beyond !

The future is the result of chance, of will and necessity

(Jacques Lesourne / French econosmist engineer)

Thanks for your attention

Commissariat à l'énergie atomique et aux énergies alternatives Centre de Cadarache 13115 Saint-Paul-les-Durance Cedex T. +33 (0)4 42 25 79 62 | F. +33 (0)4 42 25 78 76 Direction de l'Energie Nucléaire Département d'Etudes des Réacteurs Service de Physique Expérimentale

Etablissement public à caractère industriel et commercial | RCS Paris B 775 Laboratoire des Programmes Expérimentaux 685 019