Summary of session 3 Critical alspects of accelerators

Dirk Vandeplassche

SCK•CEN Mol, Belgium

Eucard2 Status of Accelerator Driven Systems Research and Technology Development, CERN, 09 February 2017

Initial question

Are we on the right track ? A convincing answer is needed.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

5 talks

- 1. Alex Mueller: historical basis of fundamental requirements, with a bias on how to obtain them. Emphasis on licensability.
- 2. Matthieu Conjat: cyclotron solution, more or less classical
 - single stage
 - SC coils
 - NC cavities
 - reverse valley field for increased flutter and no spiraling
 - compatible with H₂⁺ extraction by stripping
- 3. Frederic Bouly: linac solution, also more or less classical
 - NC front end
 - SC booster
 - with numbers and graphs showing why the SC option is right for a CW machine

- 4. Roger Barlow: more exotic proposals for possible solutions
 - FFAG not applicable without small scale proof of principle
- 5. Peter McIntyre: cyclotron solution
 - SC cavities
 - strong focusing, stackable (multibeam)
 - "hybrid"

High Power Accelerator Projects in the World

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Discussion

The old cyclotron/linac opposition is still lively and led to an amazingly strong discussion Arguments in this opposition:

- correspondance with requirements
- capabilities for an industrial application (ability to extrapolate)

- costs incl. operation
- licensing

Requirements

- beam energy
- beam current
- reliability: fault tolerance, but also level of having well proven systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

HE beam quality (not mentioned)

Extrapolation

- ▶ in energy: 1 GeV
- ▶ in current: 10 mA (but consider H⁺₂)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

in reliability

- Iinac: more or less established (SNS, ESS)
- linac: 1 W/m is more than a magic number

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- cyclotron: claiming a lower cost ...
- cyclotron: realistic beam losses . . .

Licensing

- fundamental
- redundancy is good for reliability ...
- but single point failures may cause problems !
- e.g. cyclotron with (up to) 3 injected beams ?

Conclusion

Present ADS projects that are trying to fly are proofs of feasibility — the only possible choice that may convince is

- based on established technology
- allowing for efficient prototyping
- that is scalable

and the answer to the initial question is 'Yes'.

For later industrial applications the answer may be different, but how to obtain the credibility ?