International Neutrino Summer School

Debbie Harris

Boris Kayser

August 25, 2016

School Curriculum and Lecturers

- Neutrino Mass Models (4): ZhiZhong Xing
- Neutrino Phenomenology (4): Boris **Kayser**
- Neutrino Detectors (3): Masashi Yokoyama
- Accelerator Neutrino Experiments (3): Jeff Hartnell
- Neutrino Interactions (3): Kevin McFarland
- Direct Neutrino Mass and Neutrino-less
 Double Beta Decay Measurements (4): Susanne Mertens
- Solar and Atmospheric Neutrino Experiments (2): Jen Raaf
- Reactor Neutrino Experiments (2): Seon-Hee **Seo**
- Cosmology / High Energy Neutrino Astrophysics (2): Mary Hall Reno
- Future Efforts of the Field (2): Sandhya Choubey
- Short bonus lecture:
 - Neutrinos: Can We Tell 4 From 2 (Components)? Jean-Marie Frère

Lecturer – student interaction

- Very important factor in the schools is the ability of students to share meals with each other and with the lecturers
- Another implied ingredient is that the lecturers should be at the school
 - Every lecturer except one stayed for at least 5 school days, and a few stayed 11 days or more!
- For INSS2016 success students and lecturers shared most meals at both ICISE and at Seagull Hotel

Comments from the students

- Responses: 17 replies out of 33 students
- Balance of Lecture and Tutorial time correct?
 - Mostly, but a few asked for longer tutorial sessions
- Most valuable part of the school:
 - Discussions with the lecturers and tutorial sessions
- Any topics we should have added?
 - More on ICECUBE experiment
 - Discussion of systematic uncertainties
- Were lectures at right level of difficulty?
 - Some of the mass model lectures were at too high a level
- Social events: (excursions, banquets, etc.) good, but should have had an ice-breaker at the beginning

This year's school in Vietnam

- Of 33 students:
 - 19 from Asia
 - 7 from Europe
 - 7 from USA
- Of 33 students:
 - 10 women, 23 men
- Over 80% were experimentalists

- Mix of experiments represented:
 - Accelerator-based (10)
 - Reactor-based (6-8)
 - Neutrino-less double beta decay (few)
 - atmospheric/solar based experiments (few)

What makes INSS Unique

- Broad program covers all major areas of neutrino physics
- Program involves many components
 - Formal Lectures
 - Problem sets that students must answer in groups
 - Students interact with lecturers and tutors during problemsolving sessions
 - Student presentations of the answers they derive
- Students are paired randomly in groups to work together; students with diverse backgrounds meet each other
- Also pair theorists and experimentalists
- Lecturers are asked to stay at school for full week

INSS and NuFact

- ◆ INSS covers much more than accelerator-based neutrino physics.
- ◆ The overall idea is that the INSS will now be more independent from NuFact.
- ◆ Starting next year the school will be held at Fermilab with a goal to have every other school at Fermilab with off-year schools in diverse geographical locations.
- Propose an international organizing committee for the school with representation from NuFact within the committee.