=
Bt
Blond GSOC 2016

BLonD code optimization strategy for
parallel and concurrent architectures

By Oleg lakushkin
26.08.2016

B Google Summer of Code

CMake to build external libraries

Problem:
* Windows expects Debug and Release configurations

e Linux does not

Performance is a concern so one must be able to forward compilation
arguments to libraries

Sub objective: Remove git “submodules” that are realy complex
external projects

Main objective: Fluent development for contributors from other
platforms

(B} @) Google Summer of Code

CMake to build external libraries

* Solution: always build release for linux, debug+release for MSVC

e Call Cmake from Cmake
To build depends only once

on configuration

(B} @) Google Summer of Code

Travis (public Cl SaaS)

 Script that rebuilds, retests, code on each commit
e Similar to GitLab CI (for future reference)
* Build history and GitHub badges

kiliakis / BLonD-minimal-cpp

Current Branches Build History Pull Requests

+/ master Merge branch ‘master’ of github.com:kiliakis/BLonD-minimal-cpp
Konstantinos lliakis

+/ master Update README.md

[liakis Konstantinos

I +/ master Update README.md
[|

lliakis Konstantinos

O~ #34 passed

da41dd7

O~ #33 passed

edeg3ed

O~ #32 passed

7647344

(B} {@ Google Summer of Code

AppVeyor (public Windows Cl Saa$S)

 Script that rebuilds, retests, code on each commit
 Similar to Travis Cl (for future reference)
* Build history and GitHub badges

 Tests do fail. Log 60k lines (browsable only in firefox)
4k depends build log; 6k Blond build (with tests and demos)

@ AppVeyor PROJECTS ~ ENVIRONMENTS DOCS SUPPORT i OLEGIAKUSHKIN

BLonD-minimal-cpp
HISTORY

[Structure]: Last fast fix 1.0.52

[Benchmark]: Linux fix 1.0.51

(B} @) Google Summer of Code

Coveralls (public Test cover analysis SaaS)

* Runs from gcc test and profiler files (same files used for PGO)
* Shows line hits

COVERAGE JOB FILES COYERED RAN
34.1 (BUILD_TYPE=Debug) 30 about 3 hours ago © TRAVIS JOB 34.1
34.2 (BUILD_TYPE=Release) 30 about 3 hours ago © TRAVIS JOB 34.2

FI I-E S SEARCH:

100 ¥
ALL SOURCE CHANGED COVERAGE CHANGED SHOW 'C ENTRIES
COVERAGE 4 FILE LINES RELEVANT COVERED MISSED v HITS/LINE
beams/Slices.cpp 564 182 80 102 8695918.0 [EEEE]
beams/Distributions.h 104 27 25 2 7200381.0 T
include/utlities.h 288 17 12 5 52093320 [EHE]
include/math _functions.h 375 8 02 6 4075064.0 EEE]

input_parameters/GeneralParameters.cpp 196 112 80 32 3903741.0 m

B Google Summer of Code
Documentation

* FAQ

e How to add a source file?

e How to Run Benchmarks?

e How to create new Benchmarks?

* How to create documentation?

e How to fork with Cl and gh-pages?

* How Cl scripts work?

* How to auto-format code on build?

* How to profile code?

e How to add a library?
e TLDR

* Project structure

* Cmake Options

e Advanced compilation options

https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToAddSourceFile.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToRunBenchmarks.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToCreateBenchmark.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToCreateDocumentation.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToCloneWithFeatures.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howCIScriptsWork.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToFormatCode.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToProfileCode.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToAddLibrary.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/structure.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/cmakeCompilationOptions.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/compilation.md

(Bt {@) Google Summer of Code

Kernel vs Pipeline vs Mix

* Compilers act differently on various platform\architecture combos

* CPUs and Coprocessors make fine-tuning of a library hard — a library
can be used in different settings and clusters

* There is an architectural diversity in TOP500

Rmax
Cores (TFlop/s)

10,649,600 93,0146

China MRCPC

Z 3,120,000 33,8627
China

NUDT

3 560,640 17,5900

United States

4 1,672,864 171732
United States

https://www.top500.org/lists/2016/06/

Google Summer of Code

Architectures (CPU) °

-- Tes om
e 0 W

SMP/Accelerator Signaling Memory Signaling

L3 Region | L3 Region

L3 Region | L3 Region

Bl s
L3 Region | L3 Region

L3 Region | L3 Region
:

On-Chip Accel

EE TR W W TR

L3 Region | L3 Region L3 Region | L3 Region

SMP/Accelerator Signaling Memory Signaling

36 Tiles
connected by
2D Mesh
Interconnect

DDR MC

3 DDR4 Channels
3 DDR4 Chanr el
PCle Signaling
SMP Interconnect &
Off-Chip Accelerator -‘Enablement
SMP Signaling

Power9 [I.]

Knights Landing [1,2, Il.] (Xeon Phi)

* L3 —o0nevs many
 VPU vs RISC
* One GRID vs Pairs

Google Summer of Code

itectures (GPU

Dispatch Dispatch Dispatch Dlspatch Dlspatch Dispatch Dispatch Dispatch
kS ES £ B £ 3 Es

Many cores, kernel focus

. Register File (65,536 x 32-bit)
PCle data transfer from main memory

4 3 3 3 3 3
LoisT SFU Core Core Core Core

-

PCl Express 3.0 Host Interface

ille

SFU Core Core

)
3

(<]
H

SFU Core

SFU Core

o

1

SFU Core

Jajonuon Asowe
Jojjenuo) Alowow

SFU Core

SFU Core

£ 81 50 8] 19 (B0 30 e
g

SFU Core

g

SFU Core

g
g

SFU Core

Jajjonuog fowaw
Jojjor.uon fowon
(<)
g

§
g

SFU Core

Core Core

Core - LoisT SFU Core
Core - Loist SFU (Core
Core - LoisT SFU Core Core

Core Core Core - LorsT SFU Core Core LoisT SFU
T L %WW@WW@WQMWWWW 2
NVidia (Tesla K20) ‘ e =

Lorst SFU Core

18j|onuoy Aoway
ioj|onuon Alowon

B {@ Google Summer of Code

Benchmarking before architectural decisions

* Benchmarks are a way to expend testing of our libraries [IV. V.]

* They can be independent of main library codebase or be integrated
Into it

* Benchmark results can be compared thus project performance
progress can be observed and architectural decisions judged over
time

e Optimizations for specific new hardware can be achieved faster dew
to easy to detect pressure points

B {@ Google Summer of Code

Benchmarks for BLOND

* Benchmarks run same function many times with different predefined
data (e.g. array of pairs from {100, 500} up to {1000000, 1000000})

* Created a small benchmark visualization tool
* 1D data + run-time = 2d lines plot
e 2D data + run-time = 3d scatter plot

e 3D+ = Parallel Coordinates
* Run-time is first bar
 Complex to grasp yet scalable
* Each test —one line, tests group — one color

* Updated code structure to fit in benchmarks
* They are not required for allmost everyone to build\run
* They can require specific compiler/platform and thus are mostly optional

B/ Google Summer of Code

3d viewer

—e— TC1- |-TClold
—#— TC1-|-TClint7

25B &

20B

1 15?
real time (ns

10B
5B
58k 20k
40k 30K 30k turns
20k 40k

particles 10k 50k

Nd viewer

real time (ns)

N

N
14 Gl
{ ER
\ o
\ -/

Google Summer of Code

40,000,000,000

30,000,000,000 -

20,000,000,000 -

10,000,000,000 -

real time (ns)

40430219571
26346605918
18751141548
12388570627
118839134674

Pl Lt T R

particles turns slices
- "_':-:d"liJ,DDD— 000 - 0004
.a-v""fr//f’
30,000 + 30,000 - 6,000 -
20,000 20,000 4,000
16.000 000 +

particles
486828.1
486828.1
48628.1
486828.1
97A5.43

e e

turns

48626.1
48626.1
486261
48626.1

e tata)

slices
G765.63
10
976563
10
976563

P

curve_name

3d-windows-i7-|-BMTC Lacceleration
3d-windows-i7-|-BMTC lAcceleration
3d-hybrilit-|-BEMTC 1Acceleration
3d-hybrilit-|-BMTC 1Acceleration
3d-windows-i7-|-BMTC 1acceleration

— .

B {@ Google Summer of Code

How to add visualization?

1. Run a benchmark (save .json output) e.g.
./benchTC1 _Acceleration --benchmark out=TC1l my.json
--benchmark_repetitions=3

2. Edit benchmarks_list.js with your benchmark name, file,
benchmark data axes names. One view can display multiple files
(e.g. from different clusters)

lbenchmarks = [

{name: "TC1l-3d . , ref: ["./3d-hybrilit.json", "./3d-windows-i7.]3son"], axes: ["particles", "turns", "slices"]},

ol

ata™
=2tz .
ata", ref: "./TCl.jscon", axes: ["particles"™, "turns"]},.l

{name: "TC1l-2d .
1is

ol

3. Run benchmark_browser.html in Firefox (or from a web server)

B {@ Google Summer of Code

General Benchmark problems

* Benchmarks contain code that is for testing of possible options that
might not be merged into current main project source code

* MPI requires separate compiler mpicc
* Intel compiler is required for #pragma SIMD
* CUDA has nvcc and has a set of unique libraries

 Some benchmarks can require different libraries GSL or compilation
options

* Cl integration of specific benchmark code can be a giant pain.

B Google Summer of Code
Architectural solution

e Benchmarks

* Prototypes
* XviaOpenMP
e XviaOpenCl

* benchmarkX.cpp
* benchmarkX.cmake

* BenchmarkX.cmake
 cheks for libraries\includes\compilers
 Sets defines for benchmarks
* BenchmarkX.cpp
e Expands unit test and benchmarks default implementation performance
* Additional unit test implementations are guarded by #ifdefs resolved at Cmake stage

B {@ Google Summer of Code

Creating benchmarks that can be peer-
reviewed

Take a unit test

Keep unit-test structure

Keep unit-test data access

Select a part that you want to speed up

Isolate data inputs and test results e.g:
* In: RfP->omega_RF, RfP->voltage;
* Out: Beam->dE;

6. Make a benchmark that will use test case in one of the runs to always
keep the code work-proofed

7. Benchmark old code

8. Create a prototype that can be a class or function accepting isolated
input data

L wh e

B {@ Google Summer of Code

This allows us to keep benchmarks and
evaluate them on new\old platforms

Why this is needed?

* Clusters are different in:
e OS,
* nodes count and topology,
* Accelerators (K20, K80, phi, none)
* |IBM, Intel, ARM, Sunway CPUs

* Platforms and compilers are different
* MSVCvs GCCvs ICC
* With and without optimizations

Different platforms show different results!

B {@ Google Summer of Code

What I've done during this summer for C++
version of Blond

* Cl testing
* Linux
* Windows

e External libraries auto-build
* Blond code Windows port

* Automated documentation generation

* Coverage
* Unit-tests
e Benchmarks

 Started prototypes-benchmarks for TC1

B Google Summer of Code

Acknowledgements

* CERN SFT BLonD team developers are the best, | was glad to work
with you at Google Summer of Code 2016!=)

* Microsoft Azure for research grant | used for initial Linux testing, and
St. Petersburg University faculty cluster used for MPI testing

* Cluster used for Phi, GPU benchmarks: 4 1 it [
Switch-blade
Heterogeneous cluster at LIT/JINR Blade chassis

Zy 2¥Intel Xeon CPU E5-2695v2
X 3% NVIDIA TESLA K40

2 2x Intel Xeon CPU E5-2695v3
ﬁ‘ X 2% NVIDIA TESLA K80
E - 2x Intel Xeon CPU E5-2695v2
2x Intel Xeon Phi Coprocessor 7120P
G 2x Intel Xeon CPU E5-2695v2

NVIDIA TESLA K20X
Intel Xeon Phi Coprocessor 5110P

2x Intel Xeon CPU E5-2695v2
6x HDD 1.2 TB

https://www.microsoft.com/en-us/research/academic-program/microsoft-azure-for-research/
http://spbu.ru/
http://www.apmath.spbu.ru/en/structure/depts/kmms/
http://hybrilit.jinr.ru/en/about

(B} {@ Google Summer of Code

References

YouTube:

l. RichReport
I. ANL Training
[I. Charm++
V. CppCon

V. BoostCon
Books:

[1] McCool, M.D., Robison, A.D. and Reinders, J., 2012. Structured parallel programming: patterns for efficient computation. Elsevier.
[2] Jeffers, J. and Reinders, J. eds., 2014. High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches.

[3] Jeffers, J. and Reinders, J., 2015. High Performance Parallelism Pearls Volume Two: Multicore and Many-core Programming
Approaches. Morgan Kaufmann.

[4] Arndt, J., 2010. Matters Computational: ideas, algorithms, source code. Springer Science & Business Media.
[5]Fabian R., 2016+ Data-Oriented Design book

https://www.youtube.com/user/RichReport
https://www.youtube.com/channel/UCfwgjtIQB3puojz_N9ly_Ag
https://www.youtube.com/channel/UCO0hn93ENpZtDbzErwwagZg
https://www.youtube.com/user/CppCon
https://www.youtube.com/user/BoostCon
http://www.dataorienteddesign.com/dodmain/dodmain.html

B {@ Google Summer of Code

Discussion

Thank you for your attention

