
Blond GSOC 2016
BLonD code optimization strategy for
parallel and concurrent architectures

By Oleg Iakushkin

26.08.2016

CMake to build external libraries

Problem:

• Windows expects Debug and Release configurations

• Linux does not

Performance is a concern so one must be able to forward compilation
arguments to libraries

Sub objective: Remove git “submodules” that are realy complex
external projects

Main objective: Fluent development for contributors from other
platforms

CMake to build external libraries

• Solution: always build release for linux, debug+release for MSVC

• Call Cmake from Cmake

To build depends only once

on configuration

Travis (public CI SaaS)

• Script that rebuilds, retests, code on each commit

• Similar to GitLab CI (for future reference)

• Build history and GitHub badges

AppVeyor (public Windows CI SaaS)

• Script that rebuilds, retests, code on each commit

• Similar to Travis CI (for future reference)

• Build history and GitHub badges

• Tests do fail. Log 60k lines (browsable only in firefox)
4k depends build log; 6k Blond build (with tests and demos)

Coveralls (public Test cover analysis SaaS)

• Runs from gcc test and profiler files (same files used for PGO)

• Shows line hits

Documentation

• FAQ

• How to add a source file?

• How to Run Benchmarks?

• How to create new Benchmarks?

• How to create documentation?

• How to fork with CI and gh-pages?

• How CI scripts work?

• How to auto-format code on build?

• How to profile code?

• How to add a library?

• TLDR

• Project structure

• Cmake Options

• Advanced compilation options

https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToAddSourceFile.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToRunBenchmarks.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToCreateBenchmark.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToCreateDocumentation.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToCloneWithFeatures.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howCIScriptsWork.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToFormatCode.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToProfileCode.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/FAQ/howToAddLibrary.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/structure.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/cmakeCompilationOptions.md
https://github.com/OlegJakushkin/BLonD-minimal-cpp/blob/master/docs/compilation.md

Kernel vs Pipeline vs Mix
• Compilers act differently on various platform\architecture combos

• CPUs and Coprocessors make fine-tuning of a library hard – a library
can be used in different settings and clusters

• There is an architectural diversity in TOP500

https://www.top500.org/lists/2016/06/

Architectures (CPU)

Knights Landing [1,2, II.] (Xeon Phi) Power9 [I.]
• L3 – one vs many
• VPU vs RISC
• One GRID vs Pairs

Architectures (GPU)

Many cores, kernel focus
PCIe data transfer from main memory

NVidia (Tesla K20)

Benchmarking before architectural decisions

• Benchmarks are a way to expend testing of our libraries [IV. V.]

• They can be independent of main library codebase or be integrated
into it

• Benchmark results can be compared thus project performance
progress can be observed and architectural decisions judged over
time

• Optimizations for specific new hardware can be achieved faster dew
to easy to detect pressure points

Benchmarks for BLoND
• Benchmarks run same function many times with different predefined

data (e.g. array of pairs from {100, 500} up to {1000000, 1000000})

• Created a small benchmark visualization tool
• 1D data + run-time = 2d lines plot
• 2D data + run-time = 3d scatter plot
• 3D+ = Parallel Coordinates

• Run-time is first bar
• Complex to grasp yet scalable
• Each test – one line, tests group – one color

• Updated code structure to fit in benchmarks
• They are not required for allmost everyone to build\run
• They can require specific compiler/platform and thus are mostly optional

3d viewer

Nd viewer

How to add visualization?

1. Run a benchmark (save .json output) e.g.
./benchTC1_Acceleration --benchmark_out=TC1_my.json
--benchmark_repetitions=3

2. Edit benchmarks_list.js with your benchmark name, file,
benchmark data axes names. One view can display multiple files
(e.g. from different clusters)

3. Run benchmark_browser.html in Firefox (or from a web server)

General Benchmark problems

• Benchmarks contain code that is for testing of possible options that
might not be merged into current main project source code

• MPI requires separate compiler mpicc

• Intel compiler is required for #pragma SIMD

• CUDA has nvcc and has a set of unique libraries

• Some benchmarks can require different libraries GSL or compilation
options

• CI integration of specific benchmark code can be a giant pain.

Architectural solution

• Benchmarks
• Prototypes

• XviaOpenMP
• XviaOpenCl

• benchmarkX.cpp
• benchmarkX.cmake

• BenchmarkX.cmake
• cheks for libraries\includes\compilers
• Sets defines for benchmarks

• BenchmarkX.cpp
• Expands unit test and benchmarks default implementation performance
• Additional unit test implementations are guarded by #ifdefs resolved at Cmake stage

Creating benchmarks that can be peer-
reviewed
1. Take a unit test
2. Keep unit-test structure
3. Keep unit-test data access
4. Select a part that you want to speed up
5. Isolate data inputs and test results e.g:

• In: RfP->omega_RF, RfP->voltage;
• Out: Beam->dE;

6. Make a benchmark that will use test case in one of the runs to always
keep the code work-proofed

7. Benchmark old code
8. Create a prototype that can be a class or function accepting isolated

input data

This allows us to keep benchmarks and
evaluate them on new\old platforms
Why this is needed?

• Clusters are different in:
• OS,
• nodes count and topology,
• Accelerators (K20, K80, phi, none)
• IBM, Intel, ARM, Sunway CPUs

• Platforms and compilers are different
• MSVC vs GCC vs ICC
• With and without optimizations

Different platforms show different results!

What I’ve done during this summer for C++
version of Blond
• CI testing

• Linux
• Windows

• External libraries auto-build

• Blond code Windows port

• Automated documentation generation
• Coverage
• Unit-tests
• Benchmarks

• Started prototypes-benchmarks for TC1

Acknowledgements
• CERN SFT BLonD team developers are the best, I was glad to work

with you at Google Summer of Code 2016!=)

• Microsoft Azure for research grant I used for initial Linux testing, and
St. Petersburg University faculty cluster used for MPI testing

• Cluster used for Phi, GPU benchmarks:
Heterogeneous cluster at LIT/JINR

https://www.microsoft.com/en-us/research/academic-program/microsoft-azure-for-research/
http://spbu.ru/
http://www.apmath.spbu.ru/en/structure/depts/kmms/
http://hybrilit.jinr.ru/en/about

References

YouTube:

I. RichReport

II. ANL Training

III. Charm++

IV. CppCon

V. BoostCon

Books:

[1] McCool, M.D., Robison, A.D. and Reinders, J., 2012. Structured parallel programming: patterns for efficient computation. Elsevier.

[2] Jeffers, J. and Reinders, J. eds., 2014. High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches.

[3] Jeffers, J. and Reinders, J., 2015. High Performance Parallelism Pearls Volume Two: Multicore and Many-core Programming
Approaches. Morgan Kaufmann.

[4] Arndt, J., 2010. Matters Computational: ideas, algorithms, source code. Springer Science & Business Media.

[5]Fabian R., 2016+ Data-Oriented Design book

https://www.youtube.com/user/RichReport
https://www.youtube.com/channel/UCfwgjtIQB3puojz_N9ly_Ag
https://www.youtube.com/channel/UCO0hn93ENpZtDbzErwwagZg
https://www.youtube.com/user/CppCon
https://www.youtube.com/user/BoostCon
http://www.dataorienteddesign.com/dodmain/dodmain.html

Discussion

Thank you for your attention

