

Introduction to Particle Accelerators Pedro F. Tavares – MAX IV Laboratory

CAS – Vacuum for Particle Accelerators Örenäs Slott – Glumslöv, Sweden June 2017

Introduction to Particle Accelerators

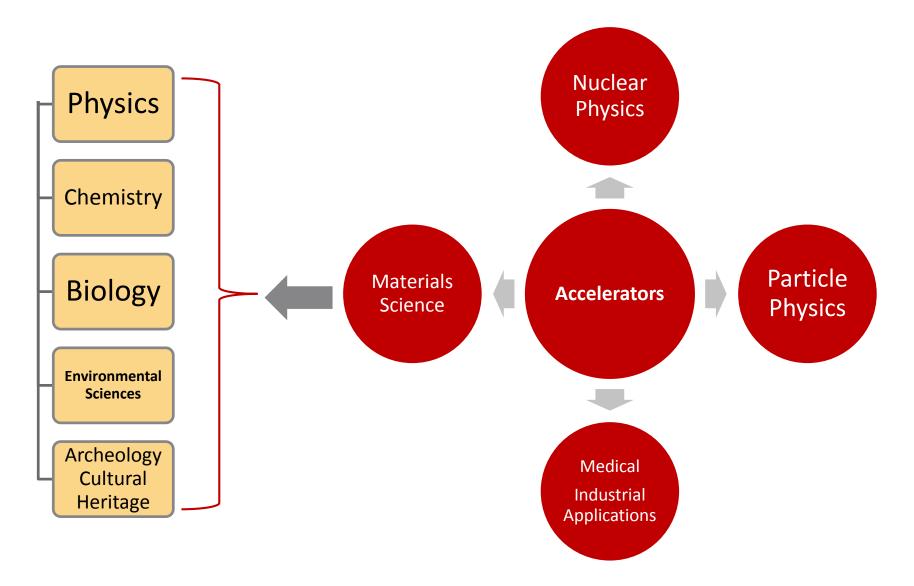
- Pre-requisites: classical mechanics & electromagnetism + matrix algebra at the undergraduate level.
- □No specific knowledge of accelerators assumed.
- Objectives
 - Provide motivations for developing and building particle accelerators
 - Describe the basic building blocks of a particle accelerator
 - Describe the basic concepts and tools needed to understand how the vacuum system affects accelerator performance.

Caveat: I will focus the discussion/examples on one type of accelerator, but most of the discussion can be translated into other accelerator models.

Outlook

Why Particle Accelerators ? Why Synchrotron Light Sources ?

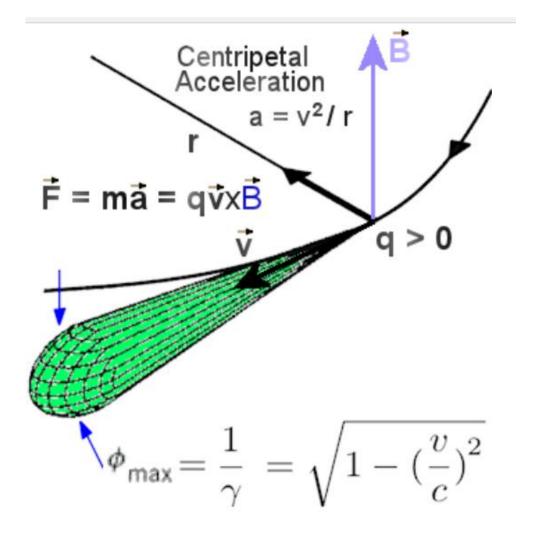
• Storage Ring Light Sources: accelerator building blocks


• Basic Beam Dynamics in Storage Rings.

- Transverse dynamics: twiss parameters, betatron functions and tunes, chromaticity.
- Longitudinal dynamics: RF acceleration, synchrotron tune
- Synchrotron light emission, radiation damping and emittance

• How vacuum affects accelerator performance.

Why Particle Accelerators ?



Beams for Materials Research

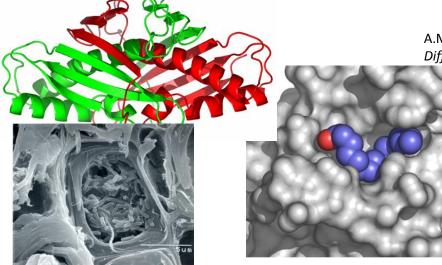
What is Synchrotron Light ?

Properties: Wide band High intensity/Brightness Polarization Time structure

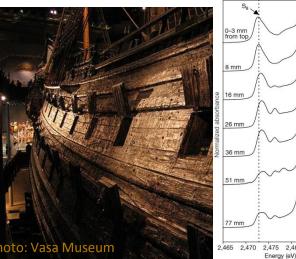
Picture: https://universe-review.ca/I13-15-pattern.png

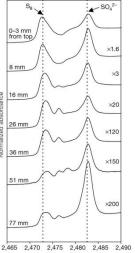
Why Synchrotron Light?

b

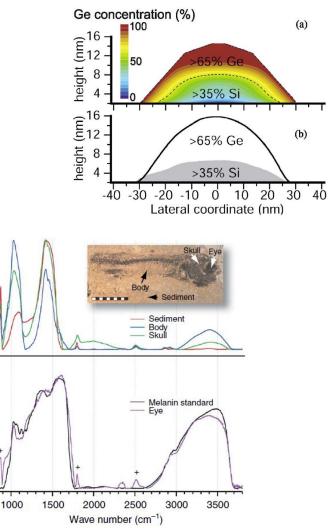

Absorbance (arbitrary units)

1.5


1.0

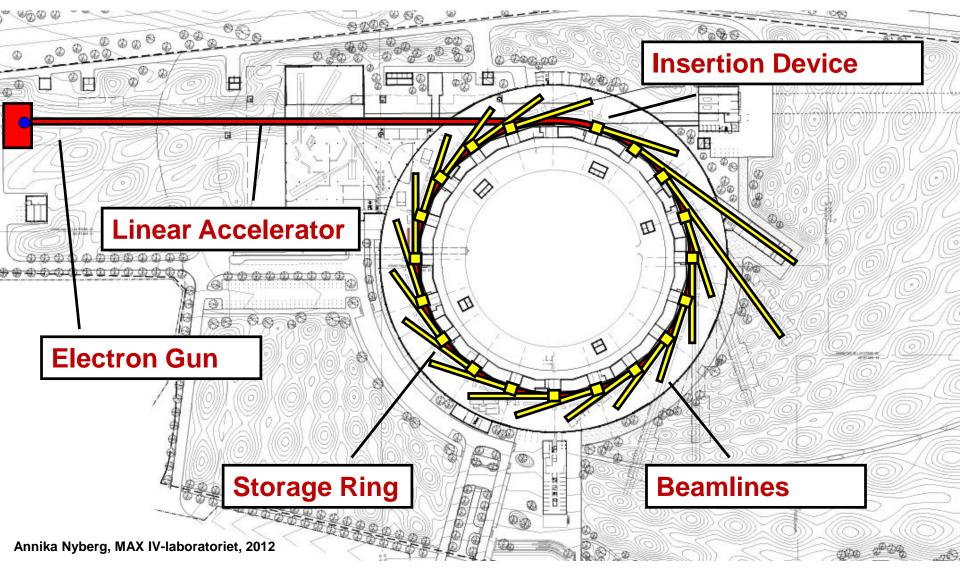

0.5

0.0



OLIVEIRA, M. A. et al. Crystallization and preliminary X-ray diffraction analysis of an oxidized state of Ohr from Xylella fastidiosa. Acta Crystallographica. Section D, Biological Crystallography, v. D60, p. 337-339, 2004

A.Malachias et ak, 3D Composition of Epitaxial Nanocrystals by Anomalous X-Ray Diffraction, PRL 99, 17 (2003)

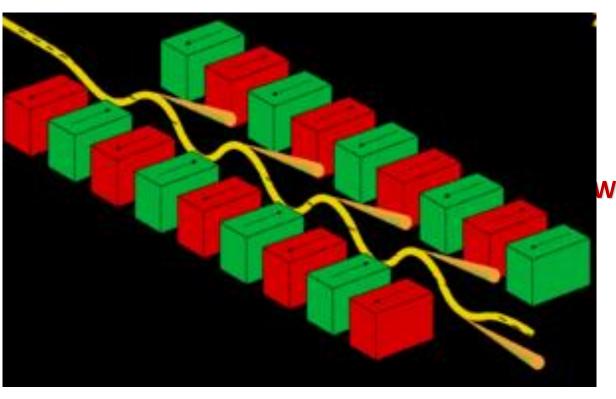


J.Lindgren et al, Molecular preservation of the pigment melanin in fossil melanosomes, Nature Communications DOI: 10.1038/ncomms1819 (2012)

Sandstrom, M. et al. Deterioration of the seventeenth-century warship vasa by internal formation of sulphuric acid. Nature 415, 893 - 897 (2002)

Ol _

Building Blocks of a SR based Light Source


June 2017

Insertion Devices

Undulator

Periodic arrays of magnets cause the beam to "undulate"

www.lightsources.org

June 2017

CERN Accelerator School – Vacuum for Accel

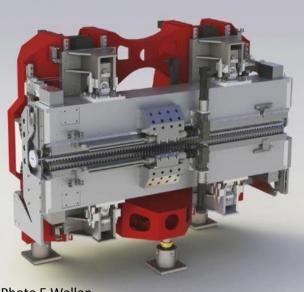
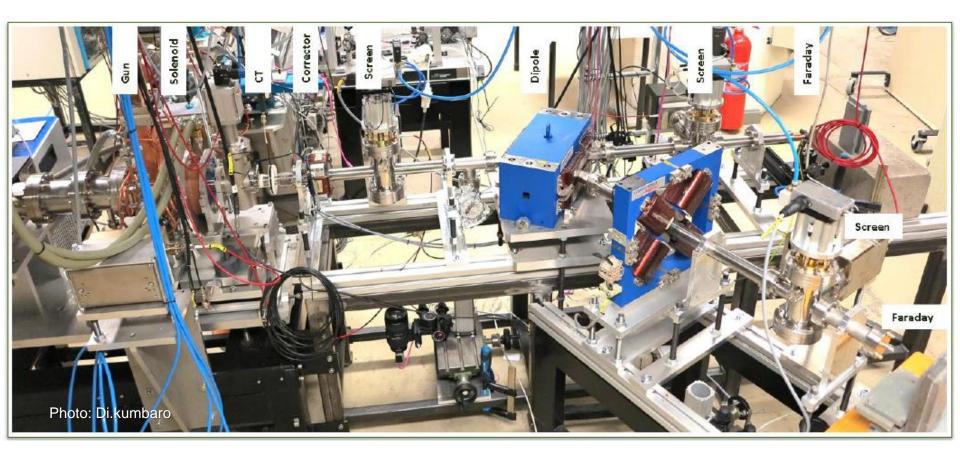



Photo E.Wallen

Electron Sources

June 2017

Injector Systems

Linear Accelerator

LINAC + Booster

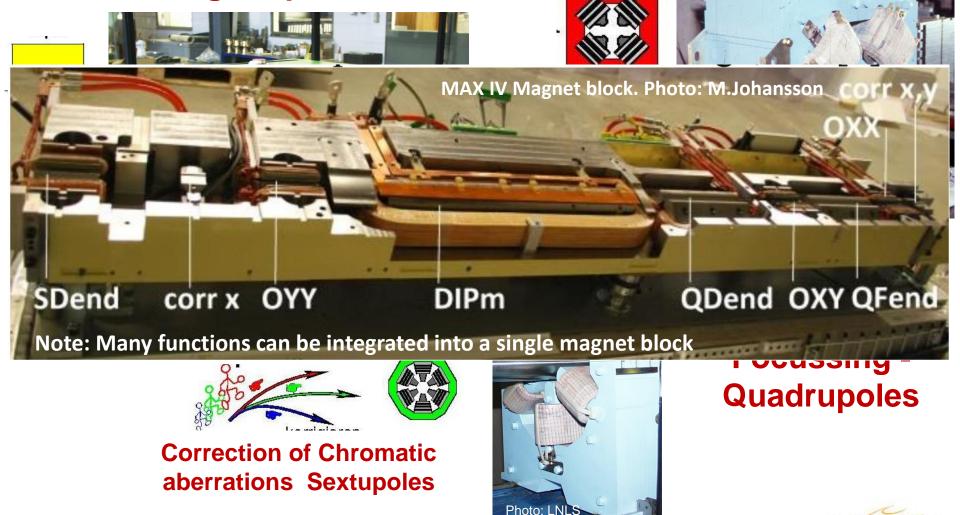
LNLS -Brazil

MAX IV Full Energy Injector LINAC

June 2017

Storage Ring Subsystems

Accumulate and maintain particles circulating stably for many turns


- Magnet System : *Guiding and Focussing*
 - DC
 - Pulsed
- Radio-Frequency System: *Replace lost energy*
- Diagnostic and Control System: *Measure properties, feedback if necessary*
- Vacuum System: *Prevent losses and quality degradation*

June 2017

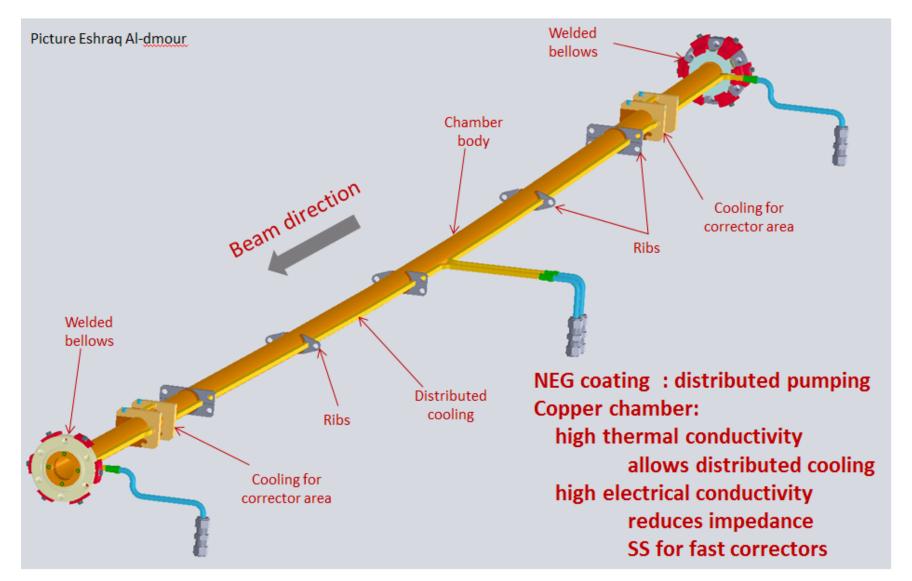
The magnet Lattice

Guiding - Dipoles

Icons adapted from BESSY www.helmholz-berlin.de

The Radio-Frequency System

100 MHz Copper Cavities



Solid State UHF Amplifiers

June 2017

The Vacuum System

June 2017

Diagnostics and Controls

Optical Diagnostics

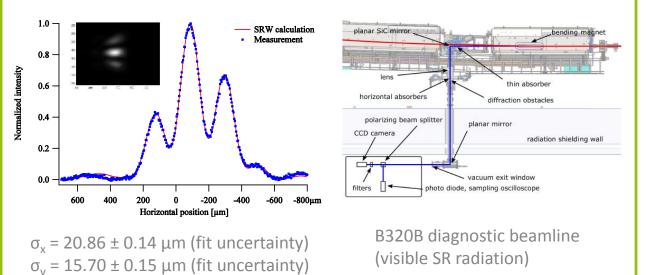
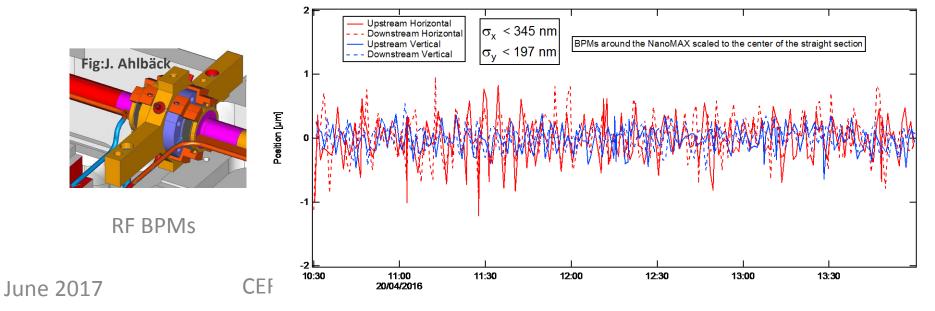



Photo:L. Isaksson

Electrical Diagnostics and Controls

Outlook

Why Particle Accelerators ? Why Synchrotron Light Sources ?

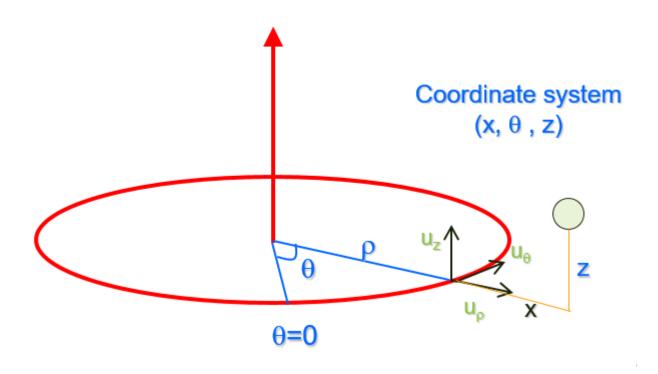
• Storage Ring Light Sources: accelerator building blocks

• Basic Beam Dynamics in Storage Rings.

- Transverse dynamics: twiss parameters, betatron functions and tunes, chromaticity.
- Longitudinal dynamics: RF acceleration, synchrotron tune
- Synchrotron light emission, radiation damping and emittance

• How vacuum affects accelerator performance.

June 2017


Storage Ring Beam Dynamics

Goals:

To determine necessary conditions for the beam to circulate stably for many turns, while optimizing photon beam parameters – larger intensity and brilliance.

We want to study motion close to an *ideal* or *reference* orbit: Only small deviations w.r.t this reference are considered.

Understand the behaviour of a system composed of a large number (~ 10¹⁰ particles) of non-linear coupled oscillators governed by both classical and quantum effects.

Symmetry conditions for the Field

 $B_{z}(x,\theta,z) = B_{z}(x,\theta,-z)$ $B_{x}(x,\theta,z) = -B_{x}(x,\theta,-z)$ $B_{\theta}(x,\theta,z) = 0$ $B_{z}(x,\theta,z) = B_{0} - g x$ $B_{x}(x,\theta,z) = -g z$

Only transverse components (no edge effects)

Only vertical component on the symmetry plane

First order expansion for the field close to the design orbit

Equations of Motion

Paraxial Approximation

Azimuthal velocity >> transverse velocity
Small deviations
Independent variable t => s

$$x''(s) + \left[1/\rho(s)^2 - K(s)\right]x(s) = \frac{1}{\rho} \frac{\Delta p}{p_0} \quad K = \frac{e_0 g}{p_0}$$

 $\rho = \frac{P_0}{e_0 B_0}$

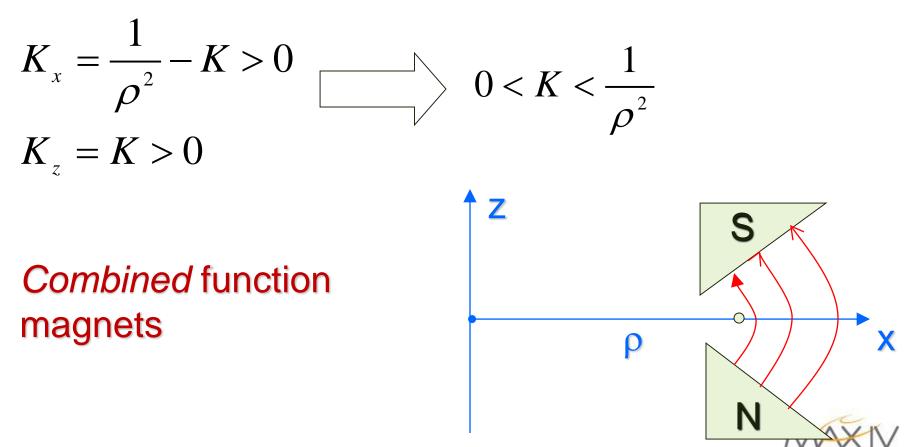
s =

$$z''(s) + K(s)z(s) = 0$$

Small deviations

K(s) periodic

Oscillatory (stable) solutions


CERN Accelerator School – Vacuum for Accelerators

lune 2017

How to guarantee stability ?

Weak focussing

Azimuthally symmetric machine: y''(s) + Ky(s) = 0 Oscillatory requires K>0

Weak Focusing Limitations

Magnet apertures scale with machine energy and become impractical

SOLUTION

Alternating Gradient Courant/Snyder

Eliminate azimuthal symmetry and alternate field gradients of opposite signs

On-Energy - General Solution

$$x(s) = x_0 C(s) + x_0' S(s)$$

On-energy particles

C(0) = 1 S(0) = 0C'(0) = 0 S'(0) = 1

Particular solutions

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = \begin{pmatrix} C(s) & S(s) \\ C'(s) & S'(s) \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$$
$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M(s) \begin{pmatrix} x \\ x' \end{pmatrix}_{0}$$

Matrix Solution

 Δp

 p_0

Combining elements means multiplying matrices

Transfer Matrices - Examples

$$x''(s) = 0$$

Field-Free Straight section
$$S(s) = s$$

$$M = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix}$$

$$x(L) = x_0 + x_0'L$$

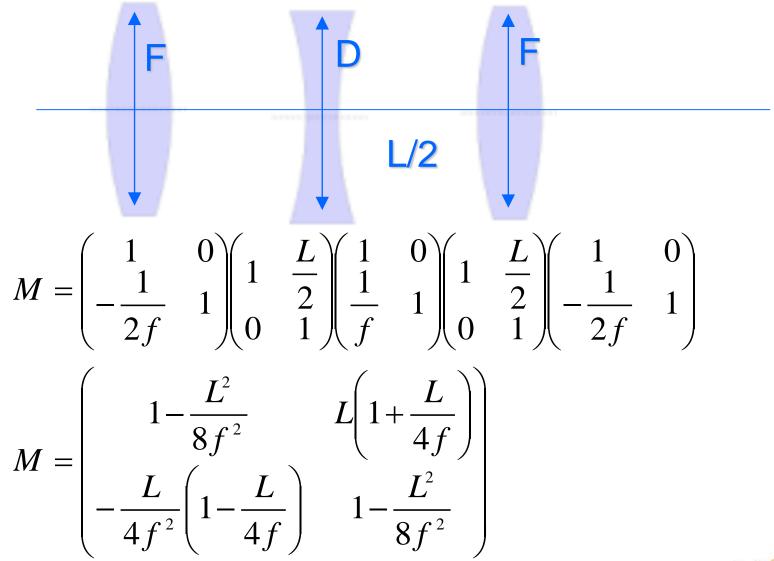
June 2017

Transfer Matrices - ExamplesFocussing Quad
$$x''(s) + Kx(s) = 0$$
 $C(s) = \cos(\sqrt{K}s)$ $S(s) = \frac{1}{\sqrt{K}}\sin(\sqrt{K}s)$ $M = \begin{pmatrix} \cos(\sqrt{K}L) & \frac{1}{\sqrt{K}}\sin(\sqrt{K}L) \\ -\sqrt{K}\sin(\sqrt{K}L) & \cos(\sqrt{K}L) \end{pmatrix}$ Thin Lens
Approximation $M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$ $L \to 0$ $KL \to \frac{1}{f}$

Stability Analysis – Periodic Systems

Transfer Matrix for a full period

$$M(s) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$


Stability

matrix elements remain bounded

$$\binom{x}{x'}_{N} = M^{N} \binom{x}{x'}_{0}$$

Alternating Gradient: Stability

Stability Analysis

$$M = \begin{pmatrix} 1 - \frac{L^2}{8f^2} & L\left(1 + \frac{L}{4f}\right) \\ -\frac{L}{4f^2}\left(1 - \frac{L}{4f}\right) & 1 - \frac{L^2}{8f^2} \end{pmatrix} = \cos(\mu)I + \sin(\mu)J$$
$$\cos(\mu) = 1 - \frac{L^2}{8f^2}$$
$$\sin(\mu) = \frac{L}{2f}\sqrt{\left(1 - \frac{L}{4f}\right)\left(1 + \frac{L}{4f}\right)}$$
$$\beta = 2f\sqrt{\frac{\left(1 + \frac{L}{4f}\right)}{\left(1 - \frac{L}{4f}\right)}}$$

Stable if μ real

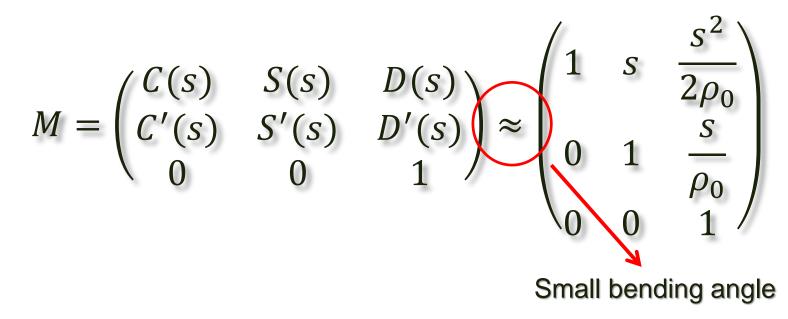
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$J = \begin{pmatrix} 0 & \beta \\ -\frac{1}{\beta} & 0 \end{pmatrix}$$
$$I^{2} = I$$
$$J^{2} = -I$$
$$M^{2} = \cos(2\mu)I + \sin(2\mu)J$$
$$M^{n} = \cos(n\mu)I + \sin(n\mu)J$$

$$\left|1 - \frac{L^2}{8f^2}\right| < 1 \Longrightarrow f > \frac{L}{4}$$

LABORATORY

Off-Energy Particles
$$D''(s) + \left[1/\rho(s)^2 - K(s)\right]D(s) = \underbrace{\frac{1}{\rho} \frac{\Delta p}{p_0}}_{\rho p_0}$$
Non-homogenuous term

D(s) can be obtained from the solution to the homogeneous eqs.

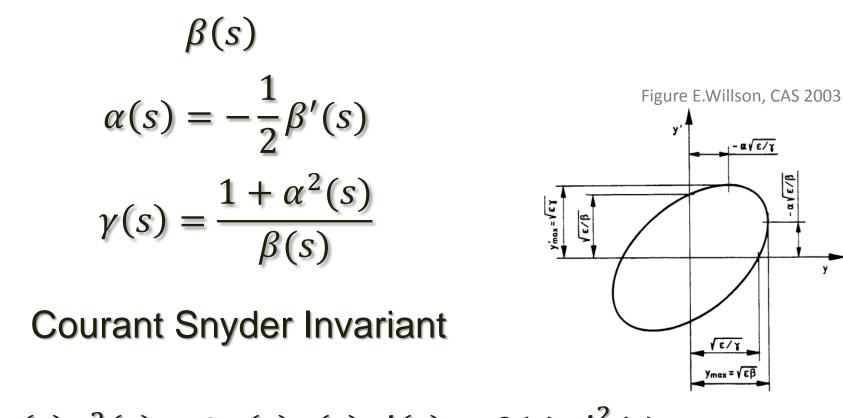

$$D(s) = S(s) \int_0^s \frac{ds'}{\rho(s')} C(s') - C(s) \int_0^s \frac{ds'}{\rho(s')} S(s')$$

Matrix Solution $\begin{pmatrix} x \\ x' \\ \frac{\Delta p}{p_0} \end{pmatrix}_s = M(s) \begin{pmatrix} x \\ x' \\ \frac{\Delta p}{p_0} \end{pmatrix}_{s=0}$ $M = \begin{pmatrix} C(s) & S(s) & D(s) \\ C'(s) & S'(s) & D'(s) \\ 0 & 0 & 1 \end{pmatrix}$

June 2017

Example: Sector Dipole Magnet

$$K(s) = 0 \qquad C(s) = \cos\left(\frac{s}{\rho_0}\right) \longrightarrow D(s) = \rho_0 \left\{1 - \cos\left(\frac{s}{\rho_0}\right)\right\}$$
$$\rho(s) = \rho_0 \qquad S(s) = \rho_0 \sin\left(\frac{s}{\rho_0}\right) \qquad D(s) = \rho_0 \left\{1 - \cos\left(\frac{s}{\rho_0}\right)\right\}$$



General pseudo-harmonic solution

$$\begin{aligned} x''(s) + [1/\rho(s)^{2} - K(s)]x(s) &= \frac{1}{\rho} \frac{\Delta p}{p_{0}} \\ z''(s) + K(s)z(s) &= 0 \end{aligned}$$
Pseudo-harmonic solution $X(s) = \sqrt{\varepsilon}\beta(s)\cos(\phi(s) - \phi_{0}) + \eta(s)\frac{\Delta p}{p} \\ Betatron Phase Advance $\phi(s) &= \int_{0}^{s} \frac{ds'}{\beta(s')}$
Betatron Phase Advance $p(s) = \int_{0}^{s} \frac{ds'}{\beta(s')}$
Betatron Function Function
Betatron Tune $Q = \frac{\mu}{2\pi} = \frac{\phi(L)}{2\pi}$
Periodic
Equation for Betatron $\frac{1}{2}\beta(s)\beta''(s) - \frac{1}{4}\beta'^{2}(s) + \beta^{2}(s)K(s) = 1$$

Twiss Parameters

α / ε/β

y

$$\varepsilon = \gamma(s)x^2(s) + 2\alpha(s)x(s)x'(s) + \beta(s)x'^2(s)$$

These are properties of the ring, defined by how the focussing is distributed along the accelerator and give us a conveniente way to describe any trajectory (in linear approximation)

June 2017

Twiss Parameters and Beam sizes

Equilibrium beam parameters: Emittance, Energy Spread

 $\epsilon_x, \epsilon_y, \sigma_\delta$

$$\sigma_{x}(s) = \sqrt{\epsilon_{x}\beta_{x}(s) + \sigma_{\delta}^{2}\eta(s)^{2}}$$

$$\sigma_{x'}(s) = \sqrt{\epsilon_{x}\gamma_{x}(s) + \sigma_{\delta}^{2}\eta'(s)^{2}}$$

$$\sigma_{y}(s) = \sqrt{\epsilon_{y}\beta_{y}(s)}$$

$$\sigma_{y'}(s) = \sqrt{\epsilon_{y}\gamma_{y}(s)}$$

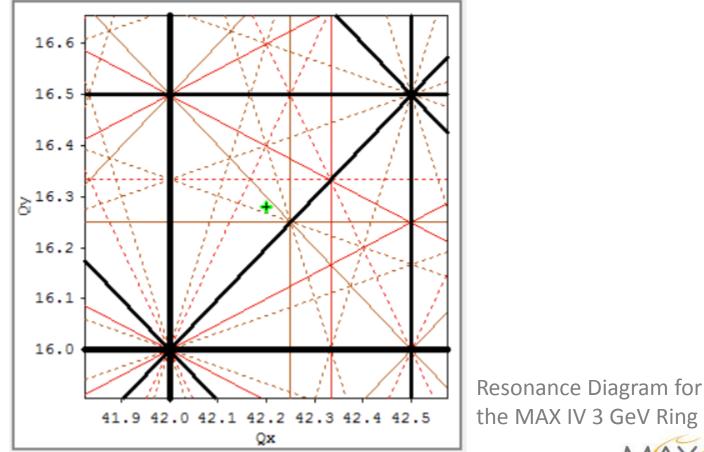
June 2017

Twiss Parameters and Perturbations

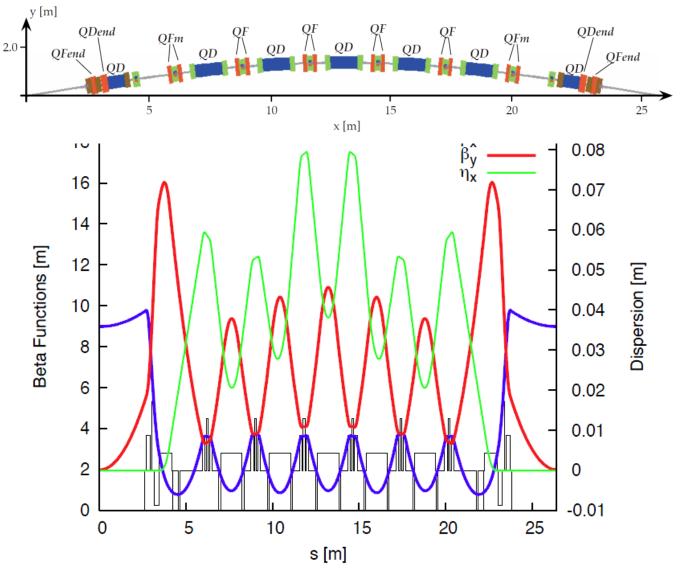
 \Box Localized dipole error (θ) – perturbation of the *closed orbit* (periodic solution)

$$\Delta x_{c.o.}(s) = \frac{\sqrt{\beta(s)\beta_0}\theta_0\cos(\phi(s) - \pi Q)}{2\sin(\pi Q)}$$

 \Box Localized quadrupole error (ΔKL) – perturbation of the tune and beta function


$$\frac{\Delta\beta(s)}{\beta(s)} = \frac{\beta_0}{2\sin(2\pi Q)}\cos(2\phi(s) - 2\pi Q)\Delta KL$$

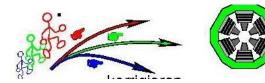
June 2017



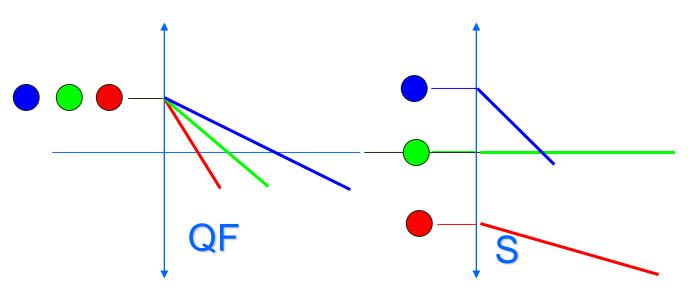
Perturbations

Some freqs. (tunes) must be avoided to prevent resonances. mQx+nQy=p m,n,p integer

Twiss Parameters MAX IV 3 GeV Ring

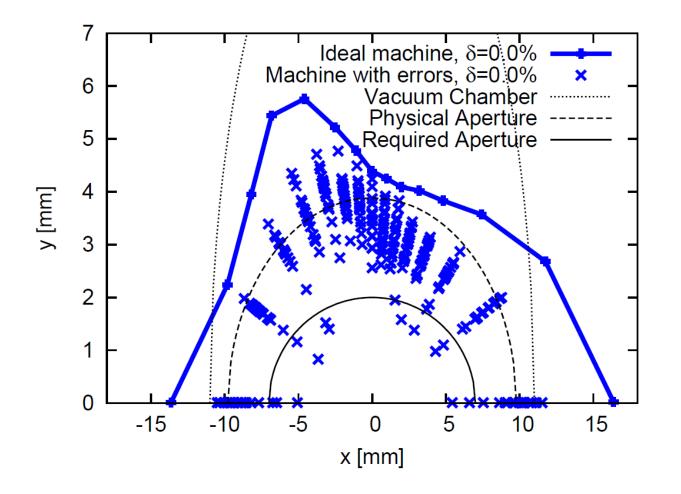


Non-linear perturbations


$$B_z(x) = Sx^2$$
$$G(x) = 2Sx$$

Chromaticity: quad strength varies with energy.

Correction of chromatic aberration with sextupoles

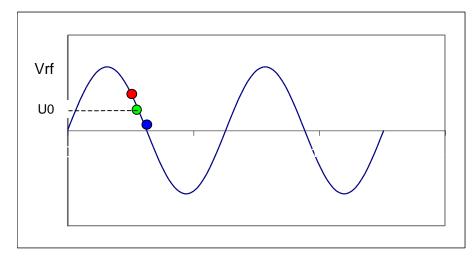

A sextupole produces a position dependent focussing

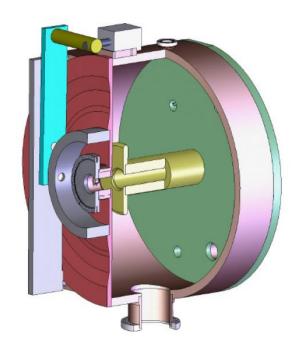
Sextupoles are nonliear elements and introduce perturbations

Non-Linear Perturbations and Dynamic Aperture

.

MAX IV DDR, 2010




June 2017

Longitudinal Dynamics: Phase Stability

Synchrotron Oscillations

Particles with different energies have different revolution periods

MAX IV 100 MHz RF Cavity

For small amplitudes: simple harmonic motion Larger amplitudes: non-linearities (like a pendulum)

$$\ddot{\tau} + \omega_s^2 \tau = 0$$

June 2017

Brief Recap – Beam Dynamics

$$x''(s) + \left[\frac{1}{\rho(s)^2} - K(s) \right] x(s) = \frac{1}{\rho} \frac{\Delta p}{p_0}$$

$$z''(s) + K(s)z(s) = 0$$

Longitudinal Plane:

Transverse Plane:

$$\ddot{\tau} + \omega_s^2 \tau = 0$$

The beam is a collection of many 3D – oscillators.
If parameters are properly chosen (magnet lattice, RF system), *stable oscillations* are realized in all planes.

Non-linearities cause distortions that may reduce the available stable area in phase space: reduction of the *dynamic aperture*.

Linear Oscillations – Twiss Parameters

- Are a property of the lattice (the whole accelerator).

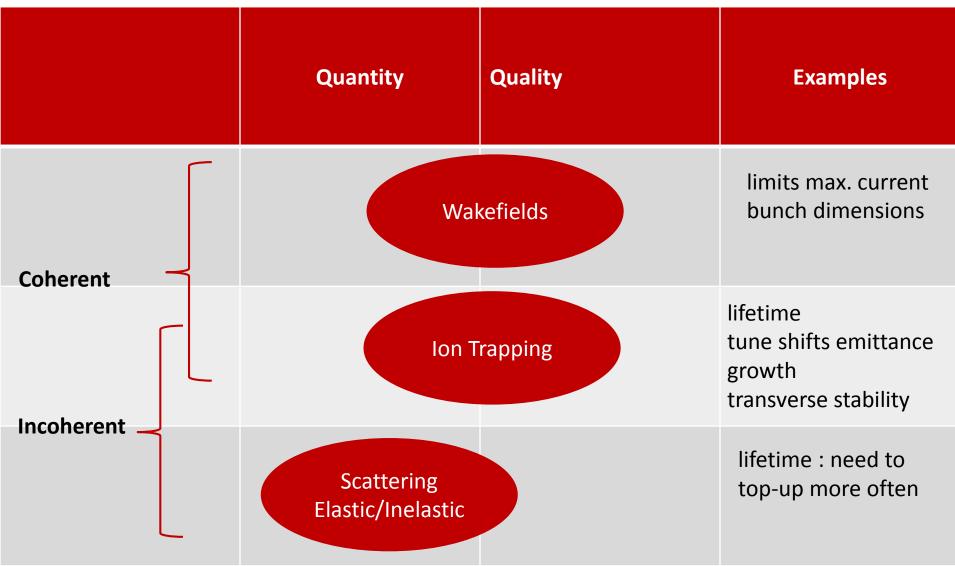
Provide a convenient way to summarize all about the linear behaviour of the accelerator: trajectories, sizes, sensitivity to errors

Outlook

Why Particle Accelerators ? Why Synchrotron Light Sources ?

• Storage Ring Light Sources: accelerator building blocks

• Basic Beam Dynamics in Storage Rings.

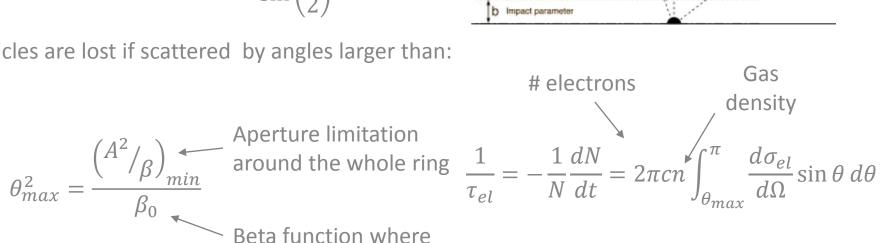

- Transverse dynamics: twiss parameters, betatron functions and tunes, chromaticity.
- Longitudinal dynamics: RF acceleration, synchrotron tune
- Synchrotron light emission, radiation damping and emittance

• How vacuum affects accelerator performance.

June 2017

How Vacuum Systems affect SR Performance

June 2017



Elastic Scattering

Rutherford Scattering cross-section

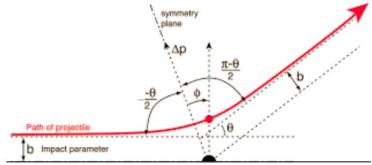
$$\frac{d\sigma_{el}}{d\Omega} = \left(\frac{1}{4\pi\varepsilon_0} \frac{Ze_0^2}{2p_0c}\right)^2 \frac{1}{\sin\left(\frac{\theta}{2}\right)^4}$$

Particles are lost if scattered by angles larger than:

the collision occured

Assuming Nitrogen

$$\tau_{el}[hr] = \frac{10.25E[GeV]^2 \epsilon_A[mmmrad]}{\langle \beta \rangle(m)P[ntorr]}$$

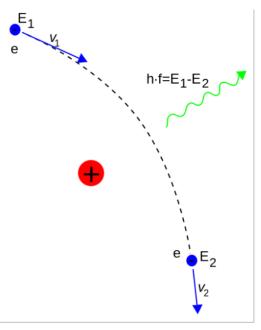

Watch out for:

- low energy
- small apertures
- high pressure at high beta locations
- High Z

CERN Accelerator School – Vacuum for Accelerators

Illustration from http://hyperphysics.phy-astr.gsu.edu

Gas


density

Inelastic Scattering (bremsstrahlung)

- Particle lose energy through radiation emission in collision with nuclei and electrons.
- If energy loss is larger than acceptance, particle is lost

$$\frac{d\sigma_{BS}}{d\delta} = \frac{\alpha_f 4Z^2 r_e^2}{\delta} \left\{ \left[\frac{4}{3} \left(1 - \frac{\delta}{E} \right) + \left(\frac{\delta}{E} \right)^2 \right] \ln\left(\frac{183}{Z^{\frac{1}{3}}} \right) + \frac{1}{9} \left(1 - \frac{\delta}{E} \right) \right\}$$

Particles are lost if they lose energy larger than the acceptance: δ_{acc}

Ilustration https://de.wikipedia.org

$$\frac{1}{\tau_{BS}} = -\frac{1}{N}\frac{dN}{dt}$$
$$= cn\int_{\delta_{acc}}^{E} \frac{d\sigma_{BS}}{d\delta}d\delta = cn4\alpha_f Z^2 r_e^2 \left\{ \frac{4}{3} \left(\ln\left(\frac{E}{\delta_{acc}}\right) - \frac{5}{8} \right) \ln\left(\frac{183}{Z^{\frac{1}{3}}}\right) + \frac{1}{9} \left(\ln\left(\frac{E}{\delta_{acc}}\right) - 1 \right) \right\}$$

 α_f Fine structure constant

1 JNI

re Classical electron radius

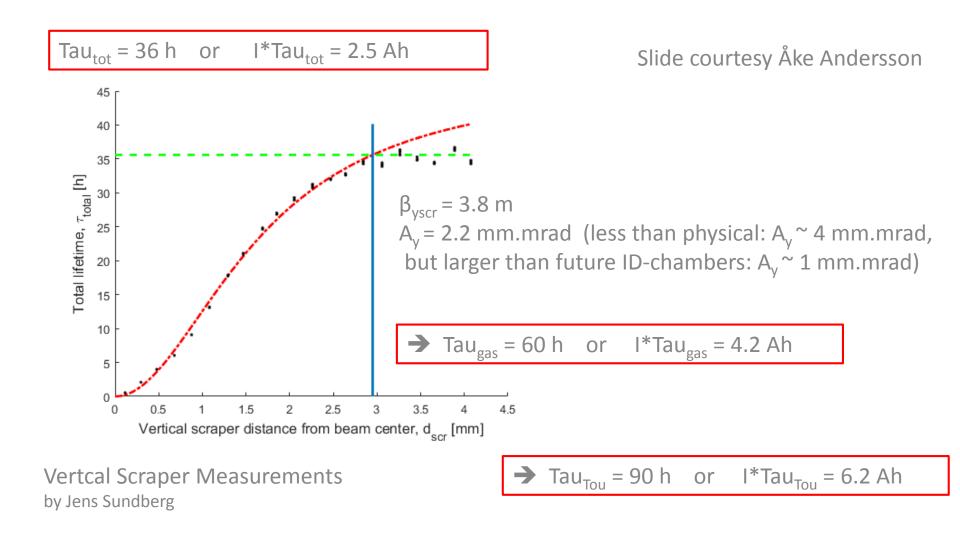
Watch out for high Z Weak dependence on energy and energy acceptance

June 2017

1

Ion Trapping

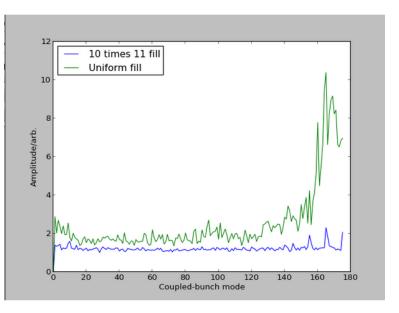
 circulating electrons collide with residual gas molecules producing positive ions that can be captured (trapped) by the beam


- Reduces beam lifetime : increased local pressure.
- Tune –shifts, Tune spreads
- Emittance Growth
- Coherent Collective instabilities (multi-bunch)

This had some nearly catastrophic effects on some early low energy injection machines

June 2017

Lifetime contributions at the MAX IV 3 GeV Ring



June 2017

Transverse collective instabilities driven by ions

Increased stability by adding a gap to the bunch train

2016/07/06: MAX IV 3 GeV Ring Early commissioning Transverse beam blow up due to ion trapping

Ion Clearing ON

Ion Clearing OFF

LNLS 1.37 GeV electron storage rig

R.H.A.Farias et at at: *Optical Beam Diagnostics for the LNLS Synchrotron Light Source*, EPAC98, p.2238.

June 2017

Thank you for your attention

June 2017

References

H. Wiedemann, Particle Accelerator Physics I and II, Springer Verlag.

M.Sands, *The Physics of Electron Storage Rings*

D.A.Edwards and M.J.Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley

CAS – CERN Accelerator Schools (Basic and Advanced)

June 2017

Back up slides

June 2017

Why Synchrotron Light ?

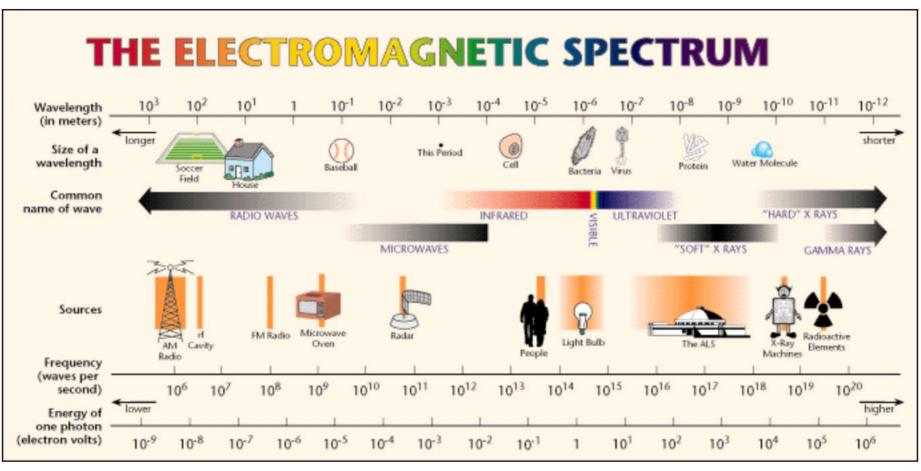
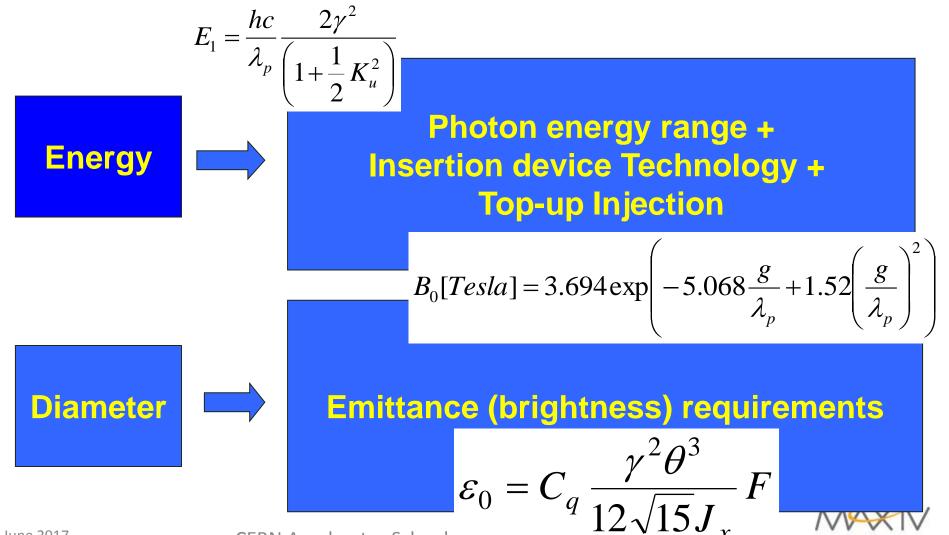


Image: Lawrence Berkely Lab

June 2017

Lattice Design for *Low Emittance* Rings General Problem Statement – Scaling Laws

$$\varepsilon_{0} = C_{q} \frac{\gamma^{2}}{J_{x}} \frac{\left\langle \frac{\pi}{\rho^{3}} \right\rangle}{\left\langle \frac{1}{\rho^{2}} \right\rangle} \qquad H(s) = \beta(s)\eta^{\prime 2}(s) + 2\alpha(s)\beta(s) + \gamma(s)\eta^{2}(s)$$
$$J_{x} = 1 - \mathcal{D} \qquad \mathcal{D} = \frac{\oint \frac{\eta(s)}{\rho^{3}(s)} (1 + 2\rho^{2}(s)k(s))}{\oint \frac{ds}{\rho^{2}(s)}}$$


$$\varepsilon_0 = C_q \frac{\gamma^2}{J_x} \frac{\langle H \rangle_{dip}}{\rho}$$

 $|H\rangle$

isomagnetic

Defining the Basic Parameters of a SR based Light Source

June 2017

CERN Accelerator School

Electrostatic SR

Stores 25 keV ions.

S.Moller, EPAC98

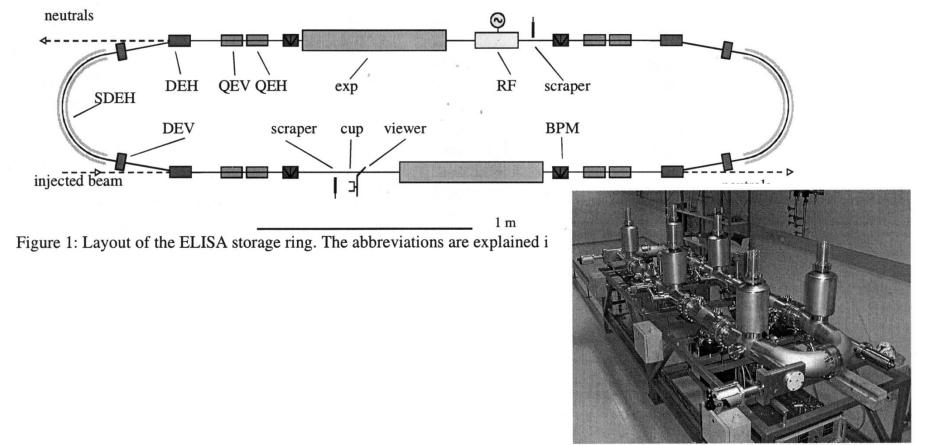


Figure 3: Picture of the ELISA storage ring.

Beam Guiding

Why magnetic fields ?

Lorentz Force
$$\vec{F} = -e_0(\vec{E} + \vec{v} \times \vec{B})$$

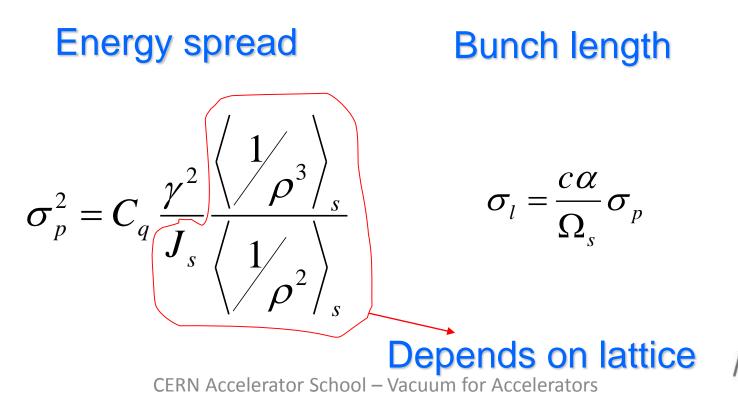
at 3.0 GeV, B= 1.0 T E = 500 MV/m !!

June 2017

Transverse Beam Dynamics

Zeroth order: guide fields (dipoles)

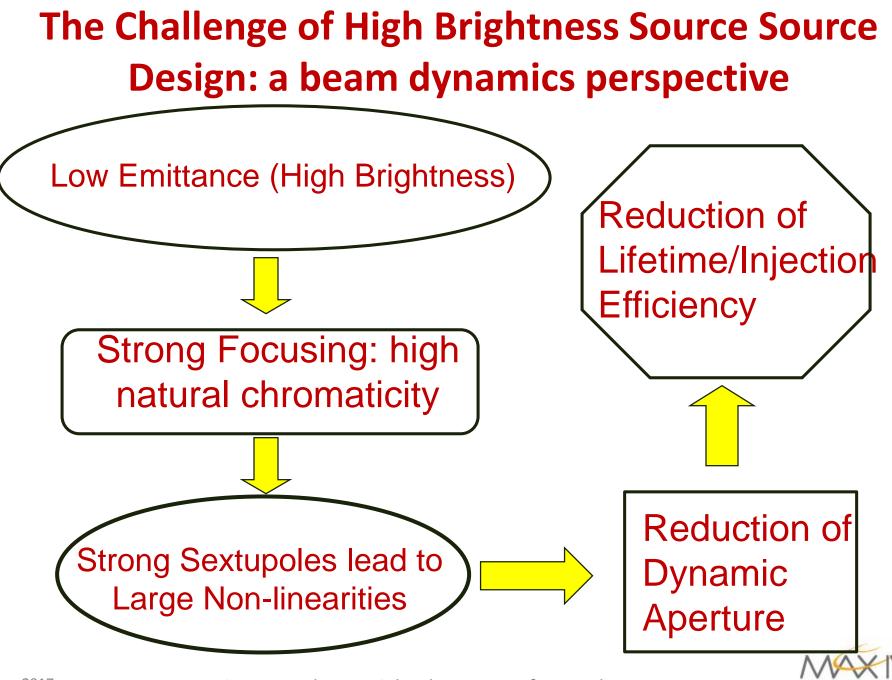
First order : Focusing – linear oscillations (quadrupoles). *Alternating Gradient*.


Second order: Chromatic Aberrations and corrections (sextupoles)

Effects of perturbations, non-linearities
Dynamic Aperture.

Damping/Excitation of Longitudinal Oscillations

- Photon emission depends on particle energy (larger energy, more emission). This adds a **dissipative** term to the eqs. of motion.
- However, emission happens in the form of discrete events (photons). At each emission, there is a sudden change in particle energy (but no sudden change in particle position.
- Both effects together lead to an equilibrium state that defines the bunch dimensions in longitudinal phase space


Damping/Excitation of Transverse Oscillations Oscillations

- Discrete photon emission changes momentum along the direction of propagation If this happens in a **dispersive** region of the magnet lattice, a transverse (betatron) oscillation will be **excited**.
- Momentum is regained at the RF cavity only along the longitudinal direction. This causes a reduction of the particle angles (damping).
- Both effects together lead to an equilibrium state that define the transverse beam dimension and angular spread, i.e., the emittance.

$$\varepsilon_{0} = C_{q} \frac{\gamma^{2}}{J_{x}} \left\langle 1 / \frac{1}{1000} \right\rangle$$

$$\varepsilon_{0} = C_{q} \frac{\gamma^{2} \theta^{3}}{12\sqrt{15}J_{x}} F$$

$$H(s) = \beta(s, r, r, s) + 2 \alpha(s, r, r, s) + \gamma(s) \eta(s)^{2}$$
Lattice

June 2017