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Introduction to Particle Accelerators

dPre-requisites: classical mechanics & electromagnetism + matrix algebra
at the undergraduate level.

A No specific knowledge of accelerators assumed.

JObjectives
— Provide motivations for developing and building particle accelerators
— Describe the basic building blocks of a particle accelerator

— Describe the basic concepts and tools needed to understand how the
vacuum system affects accelerator performance.

Caveat: | will focus the discussion/examples on one type of accelerator, but
most of the discussion can be translated into other accelerator models.
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Outlook

e \Why Particle Accelerators ?
— Why Synchrotron Light Sources ?

e Storage Ring Light Sources: accelerator building blocks

® Basic Beam Dynamics in Storage Rings.

— Transverse dynamics: twiss parameters, betatron functions and tunes,
chromaticity.

— Longitudinal dynamics: RF acceleration, synchrotron tune
— Synchrotron light emission, radiation damping and emittance

e How vacuum affects accelerator performance.
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Why Particle Accelerators ?
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Beams for Materials Research

Photon Neutron
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What is Synchrotron Light ?

-

Centripetal A
Acceleration

Properties:
Wide band
High intensity/Brightness

Polarization

Time structure
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Why Synchrotron Light ?

OLIVEIRA, M. A. et al. Crystallization and preliminary X-ray diffraction analysis of an
oxidized state of Ohr from Xylella fastidiosa. Acta Crystallographica. Section D,

Biological Crystallography, v. D60, p. 337-339, 2004
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Building Blocks of a SR based Light Source
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Insertion Devices

Periodic arrays of magnets cause the
beam to “undulate”

www.lightsources.org
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Electron Sources
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Injector Systems

Linear Accelerator LINAC + Booster

LNLS -
MAX IV Full Energy Injector LINAC Brazil
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Storage Ring Subsystems
Accumulate and maintain particles circulating stably for many turns

e Magnet System : Guiding and Focussing
— DC
— Pulsed

e Radio-Frequency System: Replace lost energy
® Diagnostic and Control System: Measure properties, feedback if necessary

e \Vacuum System: Prevent losses and quality degradation
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The magnet Lattice

Guiding - Dipoles

MAX IV Maﬁtﬂoclshphom "M.Johanssan
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Note: Many functions can be mtegrated mto a single magnet block

Correction of Chromatic
aberrations Sextupoles

Photo: LNL

MAX TV
Icons adapted from BESSY VA
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The Radio-Frequency System

100 MHz Copper Cavities Solid State UHF Amplifiers
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The Vacuum System

Welded

Picture Eshrag Al-dmour
bellows

Chamber
body

Cooling for
corrector area

Welded
bellows

- NEG coating : distributed pumping
Distributed
cooling Copper chamber:

. high thermal conductivity
{ ° | _ allows distributed cooling
. Cooling for . . .
~ corrector area high electrical conductivity

reduces impedance
SS for fast correctors
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Optical Dingnostics  D1AgNOStics and Controls
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® Basic Beam Dynamics in Storage Rings.

— Transverse dynamics: twiss parameters, betatron functions and tunes,

chromaticity.

— Longitudinal dynamics: RF acceleration, synchrotron tune
— Synchrotron light emission, radiation damping and emittance
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Storage Ring Beam Dynamics

B Goals:

B To determine necessary conditions for the beam to circulate stably for many turns, while
optimizing photon beam parameters — larger intensity and brilliance.

E\We want to study motion close to an ideal or reference orbit: Only small deviations w.r.t this
reference are considered.

BUnderstand the behaviour of a system composed of a large number (~ 1019 particles) of
non-linear coupled oscillators governed by both classical and guantum effects.

A

Coordinate system
(x,6,2)
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Symmetry conditions for the Field

B.(x,0.z2) = B.,(x,0,-z B Only transverse
2(%.0,2) £(%.0,°2) components (no edge

B,(x,0,2) =-B,(x,0,-z) effects)
By(X,0,2) =0 EOnly vertical

component on the

symmetry plane
B,(x,0,z) =By -g X First order expansion for the
field close to the design orbit

B,(X,0,z) =-g z
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Equations of Motion

F=—eVxB
Lorentz Force

Q.
K

= —e VxB
dt

F(t)=rd + 20

7M

V() =FU +réi, + 70,
av oo L
a:(r —ré°)u_+(2r0+ro)u, + Zu,
VxB=r6B,i + (2B —B,)i, —réB.u,
=r0(B, — gX)u. +(-2gz—F(B, — gx))U, + réyzd,
NIV
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Paraxial Approximation

r'=p+X
B Azimuthal velocity >> transverse velocity X << p
B Small deviations B "
BIndependent variable t =>s P=D0, +AP
Ap << P,
1 A _ €9
X'(s)+[1 p(s) —K()k(s) === <=7
P P o
2"(s)+K(s)z(s) =0 o ="
eo Bo
K(s) periodic
Oscillatory (stable) solutions S=0p
MAX TV
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How to guarantee stability ?

Weak focussing

Azimuthally symmetric machine: y"(s) + Ky(s) = 0 Oscillatory requires K>0

1

Yo,
K, =K>0
A Z S
Combined function m
magnets P 0 0 " %
N
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Weak Focusing Limitations

B Magnet apertures scale with machine energy and become
Impractical

SOLUTION

Alternating Gradient
Courant/Snyder

Eliminate azimuthal symmetry and
alternate field gradients of opposite signs
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On-Energy - General Solution

A
X(S) — XOC(S) -+ X(;S(S) On-energy particles p — O
Po
C(0)=1  S(0)=0
C'(0)=0 5'(0) =1 Particular solutions
x|  (C(s) S(s)} X
X'). \C'(s) S'(s)\X'),  Matrix Solution
X X Combining elements means
— M (s multiplying matrices
[X’]s ( )(leo
NAX TV
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Transfer Matrices - Examples

X"(s)=0
C(s) =1
Field-Free Straight secti
e ree straignt section S(S) _ g

1 L
M =
x(L) = xo + x4L
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Transfer Matrices - Examples

Focussing Quad X”(S) + KX(S) =0
C(s) = cos(\/E S)
S(s) = ——sin(WKs)

JK
/ VK L sin(KL)
\ cos(vKL) Wsm( )
\—\/Esin(\/EL) cos(WK L) )

1 0 L—>0
Thin Lens M [ 1 } 1

. . —— 1
Approximation f KL=
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Stability Analysis — Periodic Systems
Transfer Matrix for a full a b
o IO (N

. . | X X
Stability =» matrix elements remain - M N
bounded x' X'
N 0
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Alternating Gradient: Stability

A A A
F D =
L/2
v v v
1 0 LY1l O L 1 0
1 — 1 —
M=l_1 1 2 1 1 2 1
2 f 0 1Af 0 1 21
2 )
( _ L L 1+Lj
8f° 4 f

_ Lz(l_Lj L
| 4f7 Af 8f*
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Stability Analysis

| (1 oj
K L =
8f? [“ﬂ] | 0 1
M = , =cos(u)! +sin(u)J
)t 0 S
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Off-Energy Particles

Non-homogenuous

D"(s) +[1/ p(s)? = K (s) |D(s) %@ —

0

D(s) can be obtained from the solution to the homogeneous eqs.

D(s) = )

C(s) S(s) D(s)
=<C’(S) §'(s) D’(S))
0 0 1

Matrix Solution (f_p> :M@(K,,)

Po E=
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Example: Sector Dipole Magnet

gm—

C(s) = cos <i>
K(s)=0_ Po —»D(s)—pg{l—cos(
0(s) = po | s(s) = pysin <i>

Po

—

C(s) () D(s) zpo\
—(C'<s> s rol=),

0 0 1
N ")

Small bending angle
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General pseudo-harmonic solution
{ X"(s) +[1/ p(s)? —K(s)x(s) == 1 Ap
PP

0

2"(s) + K(s)z(s) = 0

pseudo-harmonic solution X (S) = +/ g@s)cos@(s) — ) Ap

( ds’\

¢(S) . Betatron Dispersion
Betatron Phase Advance — Function Function

0 ﬂ(S’) | J
1 . ¢(L) Periodic
2r 27

_ 1 o 1 5
Equation for Betatron EIB(S):B (S) — Z’B (S) + IB (S)K(S) =1

Function

Betatron Tune Q —
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Twiss Parameters

B(s)
Figure E.Willson, CAS 2003

1
a(s) = —5B'(s) A

-1+ a?(s) — ~
AT 45 :

-aye/y

-ave/p

Vey
Ve/B

Courant Snyder Invariant L e

g = y(s)x2(s) + 2a(s)x(s)x'(s) + B(s)x">(s)

These are properties of the ring, defined by how the focussing is distributed along the
accelerator and give us a conveniente way to describe any trajectory (in linear

approximation)
MAX TV
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Twiss Parameters and Beam sizes

Equilibrium beam parameters: Emittance, Energy Spread Ex, Ey, OFN

0x(5) = \€xBr(s) + 0571 (5)>

0, (5) = Vexvx(s) + 052" (5)?

o, (s) = J £, B, (s)

0,/(5) = Jeyyy<s>
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Twiss Parameters and Perturbations

O Localized dipole error (8) — perturbation of the closed orbit (periodic solution)

\/,3(5),3090(305(@15(5) — 1Q)

Axc.o.(s) - ZSin(T[Q)

U Localized quadrupole error (AKL) — perturbation of the tune and beta function

AB(s) B Bo
B(s) 2sin(2rQ)

cos(2¢(s) — 2mQ)AKL
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Perturbations

Some fregs. (tunes) must be avoided to prevent resonances.

MQX+nQy=p m,n,p integer

June 2017

41.9 42.0 42.1 42.2 42,3 42.4 42.5
Qx

Resonance Diagram for
the MAX IV 3 GeV Ring

MAX IV
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Twiss Parameters MAX IV 3 GeV Ring

June 2017
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Non-linear perturbations
B, (x) = Sx’

G(x) = 2Sx
Chromaticity: quad

strength varies with ﬁ%

energy. :

Correction of chromatic
aberration with sextupoles

Photo LNLS

A A

A sextupole produces
‘ a position dependent

\ focussing

O N
\ \\ Sextupoles are non-

F @ liear elements and
Q \ introduce perturbations
MAX TV
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Non-Linear Perturbations and Dynamic Aperture

June 2017

y [mm]

| | L |
|ldeal machine, 6=0.0% =—m—
Machine with errors, 6=0:0%  x
Vacuum Chamber -
Physical Aperture -------
Required Aperture

MAX IV DDR, 2010

CERN Accelerator School — Vacuum for Accelerators

MAXTV

LABORATORY



Longitudinal Dynamics: Phase Stability

Synchrotron Oscillations

Particles with different energies have different
revolution periods

Vrf

uo -

N
v

For small amplitudes: simple harmonic motion
Larger amplitudes: non-linearities (like a pendulum)

MAX IV 100 MHz RF Cavity

T+w’t=0
MAXIV
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Brief Recap — Beam Dynamics

X"()+ [L/ p(s)? — K (s) x(s) = - 2P
Transverse Plane: P Py

2"(s) + K (s)z(s) = 0

Longitudinal Plane: 7+@’z=0

#The beam is a collection of many 3D — oscillators.

@If parameters are properly chosen (magnet lattice, RF system), stable
oscillations are realized in all planes.

@Non-linearities cause distortions that may reduce the available stable area
In phase space: reduction of the dynamic aperture.

Linear Oscillations — Twiss Parameters
8Q,8(s), a(s), y(s)
@Are a property of the lattice (the whole accelerator).

@Provide a convenient way to summarize all about the linear behaviour of the
accelerator: trajectories, sizes, sensitivity to errors MAXN
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e How vacuum affects accelerator performance.
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How Vacuum Systems affect SR Performance

Quantity Quality

limits max. current
WELGEIES bunch dimensions

Coherent
lifetime

tune shifts emittance
growth
transverse stability

lon Trapping

Incoherent
lifetime : need to

Scattering top-up more often

Elastic/Inelastic
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E I a Stic Scatte ri ng lllustration from http://hyperphysics.phy-astr.gsu.edu

Rutherford Scattering cross-section

dog, [ 1 Zeg?\" 1
dQ  \dmey2poc) (0)4
Sin 7

Particles are lost if scattered by angles larger than:

# electrons Ga§
\ density
42 Aperture limitation J T g
“ : 1 1dN o
, ( /’B)min around the wholering -~ _ > %V _ chnj el in 6 do
Onax = Tel N dt 0 Q
:80 max
™~ Beta function where
the collision occured
Watch out for:
Assuming Nitrogen  low energy
A 10.25E[GeV]?e [mmmrad]  small apertures
Ter[hr] = (BY(m)P[ntorr] * high pressure at high beta locations
 Highz
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Inelastic Scattering (bremsstrahlung)

Eq
e Particle lose energy through radiation emission in collision with ¢

V,
e\
nuclei and electrons.

. hi=EgE,
* If energy loss is larger than acceptance, particle is lost MJ

4(1 5>+ <5>2 1 <183>+1<1 5)} @
2\t TF i B e O B :
3 E E Z§ 9 E \l

dO-BS af4Z2Tez [

dé 1)
. . ¢ @F,
Particles are lost if they lose energy larger than the acceptance: Oqcc 1:
2
1 1 dN llustration https://de.wikipedia.org

Tps N dt
E

dops o 4 a2 4(1 <E> 5)1 183 +1<1 <E> 1)
=Ccn =ctnaa . y=\|1In ——= ||\ — — | In -
ds ARE S.0c) 8 A9 Sy

5acc .
Watch out for high zZ
@f Fine structure constant Weak dependence on energy and
energy acceptance

e Classical electron radius
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lon Trapping

* circulating electrons collide with residual gas molecules
producing positive ions that can be captured (trapped) by
the beam

* Reduces beam lifetime : increased local pressure.
Tune —shifts, Tune spreads

Emittance Growth

Coherent Collective instabilities (multi-bunch)

This had some nearly catastrophic effects on some early low energy injection machines

-
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Lifetime contributions at the MAX IV 3 GeV Ring

_ * _ . 0
Tau,,=36h or I*Tau,, =2.5Ah Slide courtesy Ake Andersson
45 1
40 ‘.-._.-l""'
cl-3 il ¥ s T
= w0l J,r’f .
- . -
ﬁ ,:,*’ Byscr_ 3.8m
g adl ya A,=2.2 mm.mrad (less than physical: A ~ 4 mm.mrad,
B o7 !_,*"' but larger than future ID-chambers: A, ~ 1 mm.mrad)
B 151 s
e A
10 + ’,{' ;
5 < > Tau,,=60h or [I*Tau, =4.2 Ah
v'r
'D 'I." I i i i i i i I ]
0 0.5 1 1.5 2 25 3 3.5 4 4.5

Vertical scraper distance from beam center, dscr [mm]

Vertcal Scraper Measurements
by Jens Sundberg

= Tau,,,=90h or [*Tau,, =6.2 Ah
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Transverse collective instabilities driven by ions

Increased stability by adding a gap

_ Transverse beam blow up due to ion trapping
to the bunch train

lon Clearing ON lon Clearing OFF

— 10 times 11 fill
—  Uniform fill

10

Amplitude/arb.
=

NWWWJ\JU LNLS 1.37 GeV electron storage rig
- N R.H.A.Farias et at at: Optical Beam Diagnostics for
cotpietbimemoss the LNLS Synchrotron Light Source,EPAC98, p.2238.

2016/07/06: MAX IV 3 GeV Ring
Early commissioning
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Thank you for your attention

June 2017
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B References
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BEH. Wiedemann, Particle Accelerator Physics | and
lI, Springer Verlag.

BEM.Sands, The Physics of Electron Storage Rings

B D.A.Edwards and M.J.Syphers, An Introduction to
the Physics of High Energy Accelerators, Wiley

BECAS — CERN Accelerator Schools (Basic and
Advanced)
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Back up slides
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Why Synchrotron Light

THE ELECTROMAGNETIC SPECTRUM

M Radio Microwawe Radar ‘ !
. Oven Light Bulby

"

Wavelength 100 107 10 1 10" 10?7 10 1w0* 10> 10% 107 10* 10? 10 10" 10
(h lnete(s) | | | | 1 1 1 1 | | | 1 |
N & i shorter
Size of a '(\' t) This Pertod @ ] L: &
wavelength Basdbal Cell e & Protein Wates Molecube
name of wave INFRARED <  ULTRAVIOLET “HARD"™ X RAYS
-
MICROWAVES o YSOFT™ X RAYS GAMNMA RAYS

Sources
o : Radwactre
u,;,, Pecple 'Axn:::'.\ S
(;':v‘r:ep':y ! | ! ! ! ! !
SQ(OM) ]06 ‘0/ ]08 ]09 ‘olU lo” 0‘1 oll 0'4 0‘5 lolb 1017 1018 1019 10)0
em—
Energy of lower higher
one P.W'Oﬂ | 1 1 1 1 1 1 1 1 1 | |
(electronwolts) 10 0% 107 10% 10° 10* 100 107 107" 1 100 1w 1w 10t 10 10°

Image: Lawrence Berkely Lab
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Lattice Design for Low Emittance Rings

General Problem Statement — Scaling Laws

H
y? <F> )

g0 = Cq I H(s) = B(sn'“(s) + 2a(s)B(s) + y(s)n*(s)

=
§ 28 (1 + 202 (s)k(s))
D=
]x =1-D ¢ ds
p=(s)
2 (H).
gochg < p>""’ isomagnetic
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Defining the Basic Parameters of a SR
based Light Source

Photon energy range +
Insertion device Technology +
Top-up Injection

2
B [Tesla] = 3.694exp[5.068j +1.52U3J J

P

Diameter ‘

Emittance (brightness) requirements
2 N3
c, L2 F
12/15J

(90:
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Electrostatic SR

Stores 25 keV ions.
S.Moller, EPAC98

neutrals

s

\

gf S DEH QEV QEH
il

exp scraper

DEV scraper cup viewer BPM

injected beam — ' ]{’
1m

Figure 1: Layout of the ELISA storage ring. The abbreviations are explained i

Figure 3: Picture of the ELISA sorage rig.

MAX IV
CERN Accelerator School — Vacuum for Accelerators
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Beam Guiding

Why magnetic fields ?

Lorentz Force  F =—g (E+V x B)

at 3.0 GeV,
B=10T
E =500 MV/m !l
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Transverse Beam Dynamics

B Zeroth order: guide fields (dipoles)

EFirst order : Focusing — linear oscillations
(quadrupoles). Alternating Gradient.

B Second order: Chromatic Aberrations and
corrections (sextupoles)

B Effects of perturbations, non-linearities
Dynamic Aperture.
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Damping/Excitation of
Longitudinal Oscillations

& Photon emission depends on particle energy (larger energy, more
emission). This adds a dissipative term to the eqgs. of motion.

& However, emission happens in the form of discrete events (photons). At
each emission, there is a sudden change in particle energy (but no sudden
change in particle position.

& Both effects together lead to an equilibrium state that defines the bunch
dimensions in longitudinal phase space

Energy spread Bunch length
ca
O = Q_ Up

Depends on lattice apaxv
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Damping/Excitation of
Transverse Oscillations Oscillations

& Discrete photon emission changes momentum along the direction of
propagation If this happens in a dispersive region of the magnet lattice, a
transverse (betatron) oscillation will be excited.

& Momentum is regained at the RF cavity only along the longitudinal direction.
This causes a reduction of the particle angles (damping).

& Both effects together lead to an equilibrium state that define the transverse
beam dimension and angular spread, i.e., the emittance.
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The Challenge of High Brightness Source Source
Design: a beam dynamics perspective

Low Emittance (High Brightness)

4

Strong Focusing: high
natural chromaticity

1

il

Strong Sextupoles lead to
Large Non-linearities

=)

Efficiency
NS

Reduction of\

Lifetime/Injection

U

Reduction of
Dynamic
Aperture
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