

Materials & Properties: Mechanical Behaviour

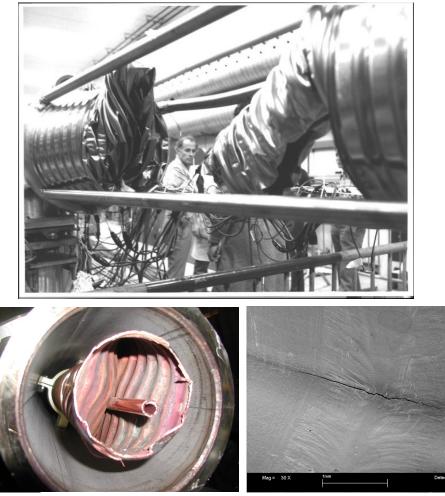
C. Garion, CERN TE/VSC

CERN Microcosm exhibition

A dream of engineer...

Materials & Properties: Mechanical Behaviour

C. Garion, CERN TE/VSC



... the hard reality!!!

Plan

1. Material modelling

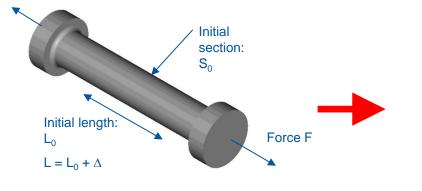
- a. Basic notions of material behaviours and strength
- b. Stress/strain in continuum mechanics
- c. Linear elasticity
- d. Plasticity
 - i. Yield surface
 - ii. Hardening
- e. Continuum damage mechanics
- f. Failure mechanics
- 2. Structural mechanical analysis
 - a. Vacuum chamber
 - i. Loads on a chamber
 - ii. Equilibrium equations
 - iii. Stress on tube
 - iv. Instability (buckling)
 - b. Vacuum system as mechanical system
 - i. Support unbalanced force
 - ii. Stability (column buckling)
- 3. Selection criteria of materials
 - a. Figures of merit of materials
 - b. Some material properties
 - c. Some comparisons based on FoM
- 4. Conclusion

Plan

1. Material modelling

- a. Basic notions of material behaviours and strength
- b. Stress/strain in continuum mechanics
- c. Linear elasticity
- d. Plasticity
 - i. Yield surface
 - ii. Hardening
- e. Continuum damage mechanics
- f. Failure mechanics
- 2. Structural mechanical analysis
 - a. Vacuum chamber
 - i. Loads on a chamber
 - ii. Equilibrium equations
 - iii. Stress on tube
 - iv. Instability (buckling)
 - b. Vacuum system as mechanical system
 - i. Support unbalanced force
 - ii. Stability (column buckling)
- 3. Selection criteria of materials
 - a. Figures of merit of materials
 - b. Some material properties
 - c. Some comparisons based on FoM
- 4. Conclusion

Basic Notions of Material Strength



 ε_{trans}

 \mathcal{E}_{axial}

Stress = Force/Section σ [MPa] = F[N]/S[mm²] Strain = Displacement/length $\epsilon = \Delta$ [mm]/L[mm]

€_{eng}

Basic mechanical properties from tensile tests

Nominal or engineering stress:

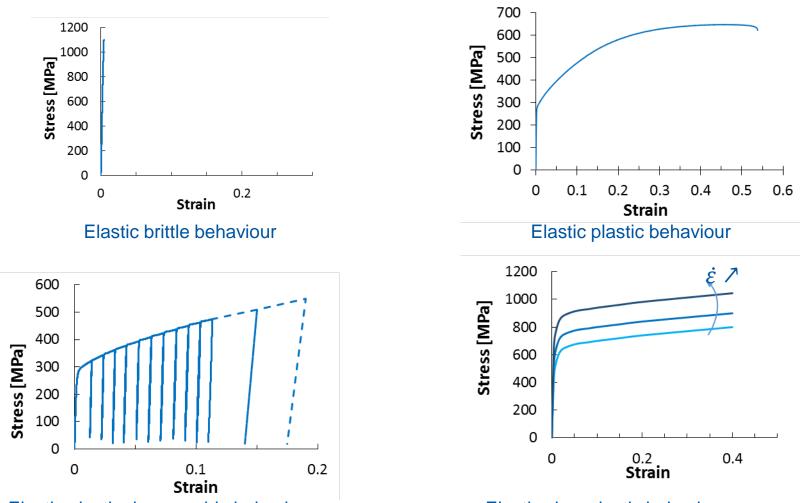
$$\sigma_{eng} = \frac{F}{S_0}$$

Nominal strain: $\varepsilon_{eng} = \frac{\Delta L}{L_0} = \frac{L - L_0}{L_0}$

Poisson coefficient:
$$v = -$$

E: Young modulus (linear elastic behavior) $\sigma_y (R_p)$: Yield strength $\sigma_m (R_m)$: Tensile strength

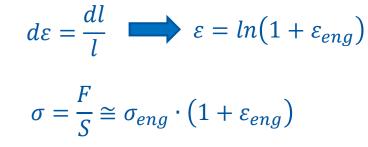
Basic Material Behaviours

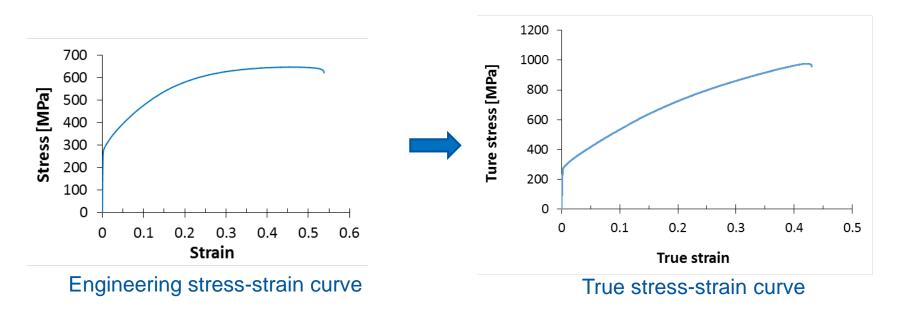


Elastic plastic damageable behaviour

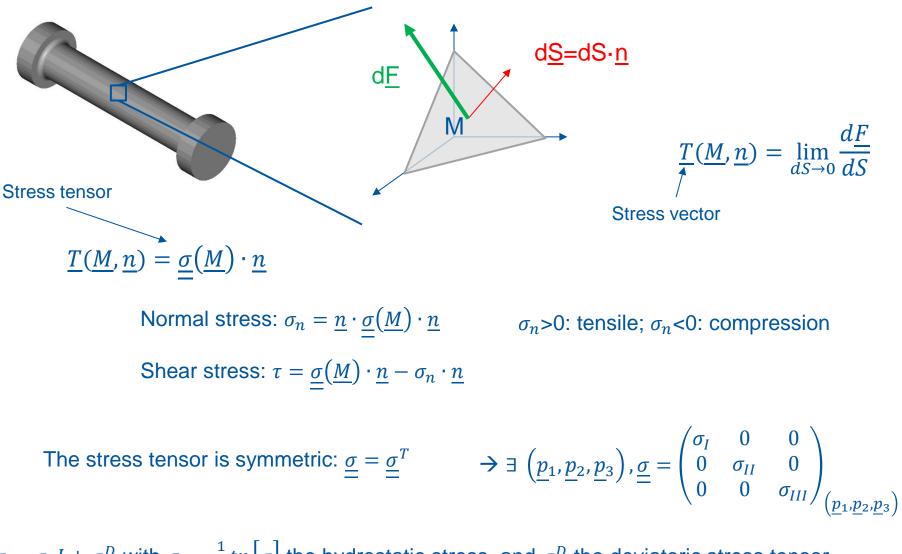
Elastic viscoplastic behaviour

True Strain/Stress vs Engineering Strain/Stress



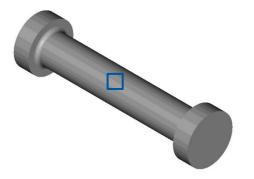


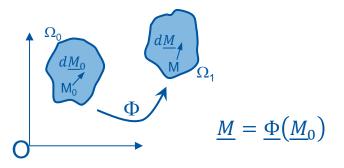
Stress in Continuum Mechanics



 $\underline{\sigma} = \sigma_h \underline{I} + \underline{\sigma}^D$ with $\sigma_h = \frac{1}{3} tr [\underline{\sigma}]$ the hydrostatic stress, and $\underline{\sigma}^D$ the deviatoric stress tensor.

Strain in Continuum Mechanics





 $d\underline{M} = \frac{\partial \underline{\Phi}(\underline{M}_0)}{\partial \underline{M}_0} \cdot d\underline{M}_0 = \underline{\underline{F}}(\underline{M}_0) \cdot d\underline{M}_0 \qquad \qquad \underline{\underline{F}} \text{ is the deformation gradient.}$

Green Lagrange deformation: $\underline{E}(\underline{M}_0) = \frac{1}{2} \cdot \left[\underline{F}^T(\underline{M}_0) \cdot \underline{F}(\underline{M}_0) - \underline{I} \right]$

Considering the displacements: $(\underline{M} = \underline{M}_0 + \underline{u}(\underline{M}_0))$

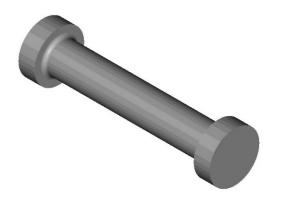
$$\underline{\underline{E}}(\underline{M}_{0}) = \frac{1}{2} \cdot \left[\frac{\partial \underline{u}(\underline{M}_{0})}{\partial \underline{M}_{0}} + \left(\frac{\partial \underline{u}(\underline{M}_{0})}{\partial \underline{M}_{0}} \right)^{T} + \left(\frac{\partial \underline{u}(\underline{M}_{0})}{\partial \underline{M}_{0}} \right)^{T} \cdot \frac{\partial \underline{u}(\underline{M}_{0})}{\partial \underline{M}_{0}} \right]$$

For small perturbations $(\|\underline{u}\| \ll \|\underline{M}_0\|)$:

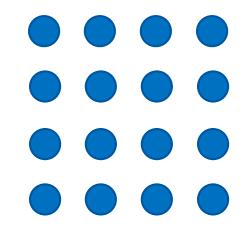
$$\underline{\underline{\varepsilon}}(\underline{u}) = \frac{1}{2} \cdot \left[\frac{\partial \underline{u}(\underline{M}_0)}{\partial \underline{M}_0} + \left(\frac{\partial \underline{u}(\underline{M}_0)}{\partial \underline{M}_0} \right)^T \right]$$

Energy variation:
$$d\mathbb{E} = \int_{\Omega} \underline{\sigma} : d\underline{\varepsilon}$$

How material behaves?

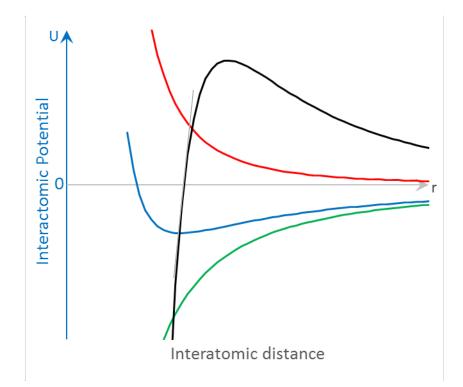


How atoms interact?



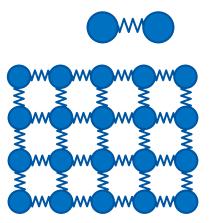
Linear Elasticity

The interatomic potential is the sum of 2 contributions:



It presents a minimum, corresponding to the free equilibrium of the atoms. U0 is the bonding energy.

The interactomic force is defined by $F = \frac{dU}{dr}$ and can be written: $F = k \cdot r$



This can be generalized in the form (Hooke's law): $\underline{\sigma} = \underline{C} : \underline{\varepsilon}^e$ with \underline{C} the stiffness tensor.

Linear Isotropic Elasticity

In the worst case, $\underline{\underline{C}}$ has 21 independent parameters!

For homogeneous isotropic material, they can be reduced to two independent parameters !

$$\underline{\underline{\sigma}} = \lambda \cdot tr\left[\underline{\underline{\varepsilon}}^{e}\right]\underline{\underline{I}} + 2\mu\underline{\underline{\varepsilon}}^{e} \qquad \qquad \underline{\underline{\varepsilon}}^{e} = \frac{1+\nu}{\underline{E}}\underline{\underline{\sigma}} - \frac{\nu}{\underline{E}}tr\left[\underline{\underline{\sigma}}\right]\underline{\underline{I}}$$

 λ and μ are the Lamé coefficients. μ , sometimes denoted G, is the shear modulus.

$\lambda = \frac{\nu E}{(1+\nu)(1-2\nu)}$	$\mu = \frac{E}{2(1+\nu)}$	Bond type	Typical range Young modulus [GPa]
$E = \mu \frac{3\lambda + 2\mu}{(\lambda + \mu)}$	$\nu = \frac{\lambda}{2(\lambda + \mu)}$	Covalent	1000
		Ionic	50
2и Е		Metallic	30-400
$k = \lambda + \frac{2\mu}{3} = \frac{2}{3(1-2\nu)}$		Van der Waals	2

	Aluminium	Copper Stainless steel		Titanium		
E [GPa]	70	130	195	110		
ν	0.34	0.34	0.3	0.32		
Elastic parameters at room temperature of materials commonly used for UHV applications						

Thermal Linear Isotropic Elasticity

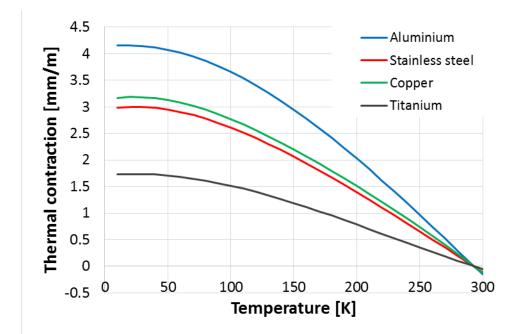
$$\underline{\underline{\sigma}} = \underline{\underline{C}} : \underline{\underline{\varepsilon}}^e = \underline{\underline{C}} : \left(\underline{\underline{\varepsilon}} - \underline{\underline{\varepsilon}}^{th}\right)$$

 $\underline{\underline{\varepsilon}}^{th}$ is the thermal strain tensor.

 $d\underline{\varepsilon}^{th} = \alpha(T) \cdot dT \cdot \underline{\underline{I}}$ $\underline{\varepsilon}^{th} = \alpha \cdot (T - T_{ref}) \cdot \underline{\underline{I}}$

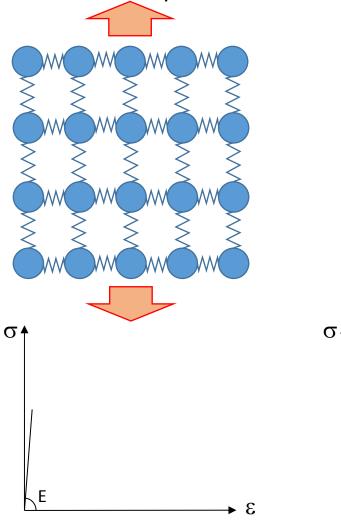
 α is the coefficient of thermal expansion (CTE).

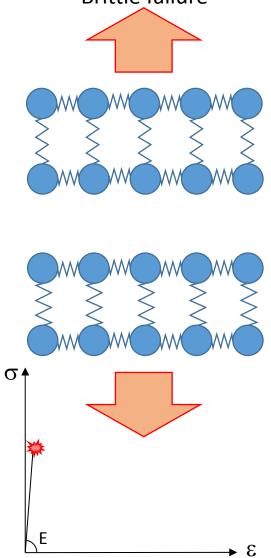
In simplified 1D, $\sigma = E \cdot (\varepsilon - \varepsilon^{th})$ = $E \cdot (\varepsilon - \alpha \cdot \Delta T)$



	Aluminium	Copper	Stainless steel	Titanium
α [10 ⁻⁶ ·K ⁻¹]	22	17	16	8.9

Brittle failure Elasticity Material in free state \mathbb{W} ٨٨ V۸ \mathbf{M} W $\mathcal{N}\mathcal{N}$ ΛΛ





Strength of Brittle Material

Damage mechanism: Cleavage, intergranular fracture

Material is very sensitive to stress concentration and therefore the material strength strongly dependent of the initial defects.

The strength of the material is represented by the <u>Weibull's law</u>, defining the survival probability:

$$\sigma_{eq} = \max(\sigma_I, \sigma_{II}, \sigma_{III}, 0)$$

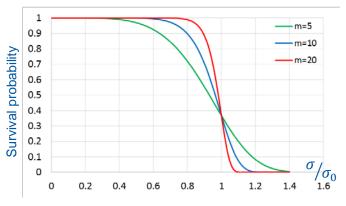
Example on glassy carbon:

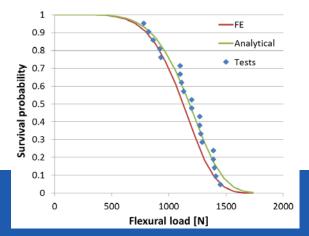
	Average strength [MPa]	Standard deviation [MPa]	Weibull shape parameter	Weibull scale parameter [MPa]	
Flexure	206	37	5.6-6.3	375-416	
Compression	1012	73	13.5-14.6	1587-1644	

Vacuum, Surfaces & Coatings Group Technology Department
 10 µm
 EHT = 10.00 k/ WD = 6.6 mm
 Specimen_1A
 Data .8 May 2016 Mag = 1.00 KX

 10 µm
 EBT = 10.00 k/ WD = 6.6 mm
 Specimen_1A
 Data .8 May 2016 Mag = 1.00 KX

Fracture surface of heavy tungsten alloy at 77K





Plasticity Elasticity Material in free state Ŵ ١Λ٨ \mathcal{M} W ۱۸۸ **** W ٨٨ $\Lambda\Lambda$ ۱۸۸ ΛΛ W W ۱ΛΛ σŧ σŧ

3 <

Ε

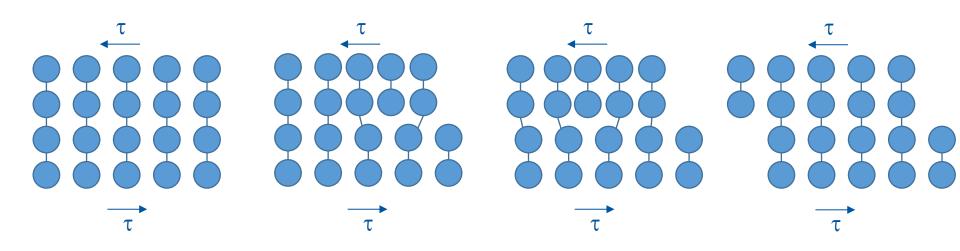
E

3 ∢

Plasticity

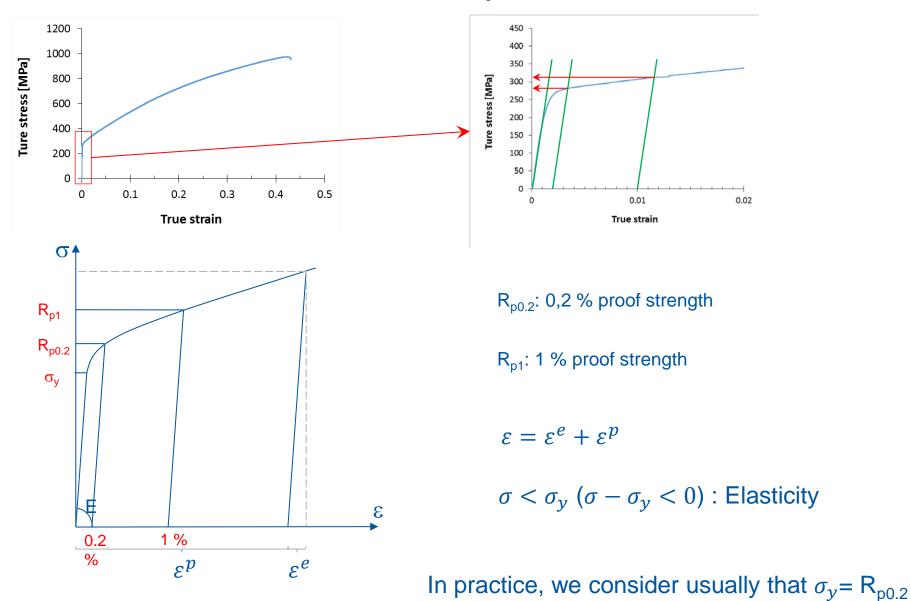
Material with plasticity: irreversible plastic deformation before rupture

Mechanism:



The plastic deformation is associated to the dislocation motions (slip under shear stress).

Plasticity



Plasticity – Yield Surface

Yield surfaces are defined by:

•
$$f(\underline{\sigma}, \sigma_y, ...) < 0$$
 : elasticity
• $f(\underline{\sigma}, \sigma_y, ...) = 0$: plasticity

Isotropic criteria:

<u>Tresca</u>

the maximum shear stress, as a function of the principal stresses, is given by: $\tau_{max} = Max(\sigma_i - \sigma_j)$

Tresca's yield surface: $f(\underline{\sigma}, \sigma_y) = Max(\sigma_i - \sigma_j) - \sigma_y$

Initial Tresca's criteria: $Max(\sigma_i - \sigma_j) - R_p = 0$

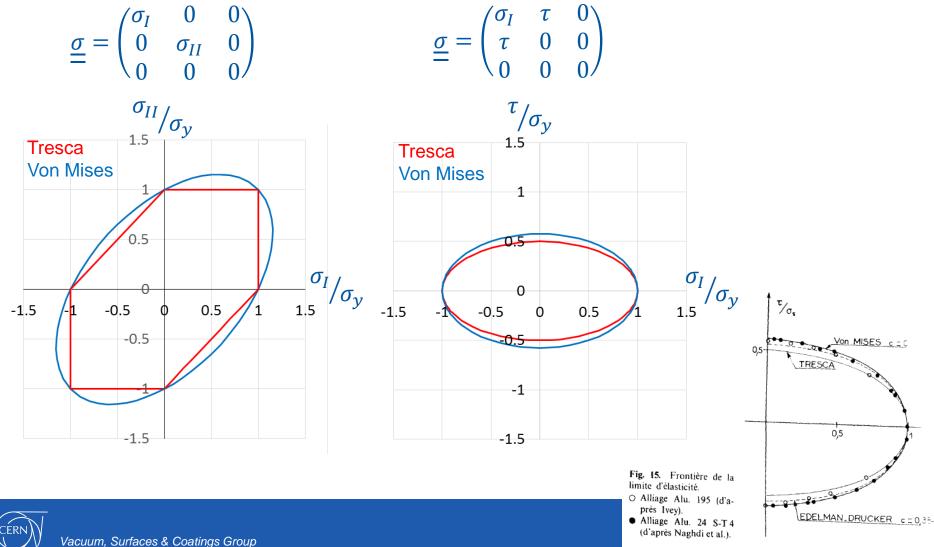
Von Mises

Based on the distortional elastic energy $\propto tr\left[\underline{\sigma}^{D} \cdot \underline{\sigma}^{D}\right] = \underline{\sigma}^{D} \cdot \underline{\sigma}^{D}$ $f\left(\underline{\sigma}, \sigma_{y}\right) = \sqrt{\frac{3}{2}\left(\underline{\sigma}^{D} \cdot \underline{\sigma}^{D}\right)} - \sigma_{y}$

In principal stress space: $\frac{1}{\sqrt{2}}\sqrt{(\sigma_1 - \sigma_2)^2 + (\sigma_1 - \sigma_3)^2 + (\sigma_2 - \sigma_3)^2} - \sigma_y$ In stress space: $\frac{1}{\sqrt{2}}\sqrt{(\sigma_{11} - \sigma_{22})^2 + (\sigma_{11} - \sigma_{33})^2 + (\sigma_{22} - \sigma_{33})^2 + 6(\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2)} - \sigma_y$

Plasticity – Yield Surface

Comparison of the Tresca's and Von Mises's yield surface for plane stress state:



Vacuum, Surfaces & Coatings Group Technology Department

C. Garion, CAS Vacuum, Lund, 7th June 2017

Experimental validity on aluminium alloys

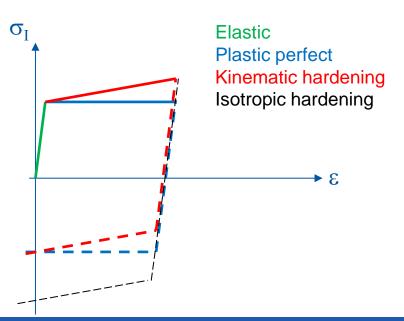
Plasticity - Hardening

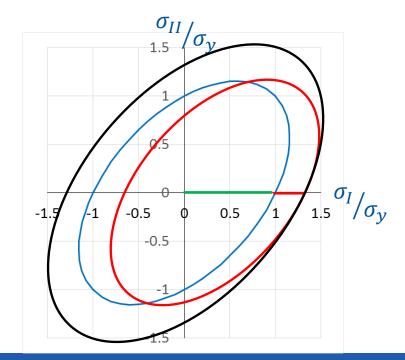
Plastic strain tensor: $\underline{\varepsilon}^p = \underline{\varepsilon} - \underline{\varepsilon}^e$

Accumulated plastic strain, p :

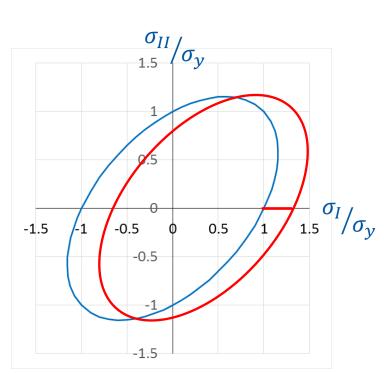
$$dp = \sqrt{\frac{2}{3}d\underline{\varepsilon}^{p}:d\underline{\varepsilon}^{p}} > 0$$

Plastic strain are induced by dislocation motions \rightarrow no volumic change \rightarrow tr $\left[\underline{\varepsilon}^{p}\right] = 0$





Plasticity – Kinematic Hardening



$$f\left(\underline{\sigma},\sigma_{y},\underline{X}\right) = \sqrt{\frac{3}{2}\left(\left(\underline{\sigma}^{D}-\underline{X}\right):\left(\underline{\sigma}^{D}-\underline{X}\right)\right)} - \sigma_{y}$$
$$d\underline{X} = \frac{2}{3}Hd\underline{\varepsilon}^{p}$$

Normality rule:

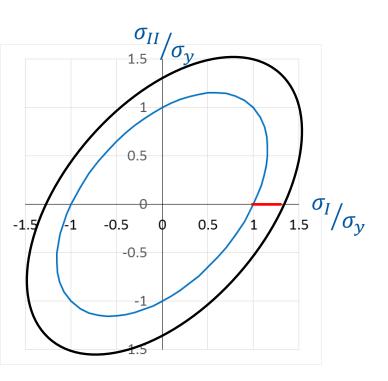
$$d\underline{\underline{\varepsilon}}^{p} = d\lambda \frac{\partial f}{\partial \underline{\underline{\sigma}}} = d\lambda \frac{3}{2} \frac{\left(\underline{\underline{\sigma}}^{D} - \underline{\underline{X}}\right)}{\sqrt{\frac{3}{2}\left(\left(\underline{\underline{\sigma}}^{D} - \underline{\underline{X}}\right) : \left(\underline{\underline{\sigma}}^{D} - \underline{\underline{X}}\right)\right)}}$$

Consistency equation: df = 0

As a first estimation, the hardening modulus H is estimated by:

$$H \sim \frac{\sigma_u - R_{p0.2}}{\varepsilon_u}$$

Plasticity – Isotropic Hardening



$$f\left(\underline{\sigma}, \sigma_{y}, R\right) = \sqrt{\frac{3}{2}\left(\underline{\sigma}^{D}: \underline{\sigma}^{D}\right) - \sigma_{y} - R}$$
$$dR = g \cdot dp$$

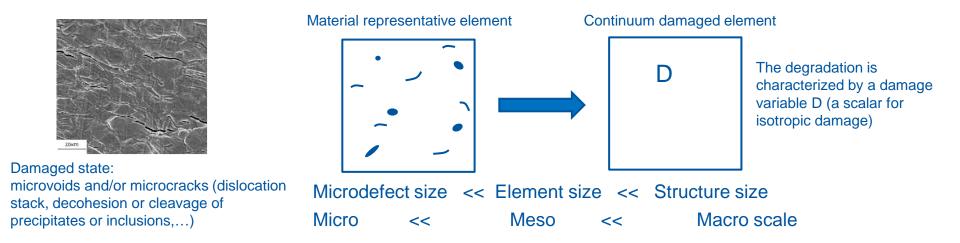
Normality rule:

$$d\underline{\underline{\varepsilon}}^{p} = d\lambda \frac{\partial f}{\partial \underline{\underline{\sigma}}} = d\lambda \frac{3}{2} \frac{\underline{\underline{\sigma}}^{D}}{\sqrt{\frac{3}{2} \left(\underline{\underline{\sigma}}^{D} : \underline{\underline{\sigma}}^{D}\right)}}$$

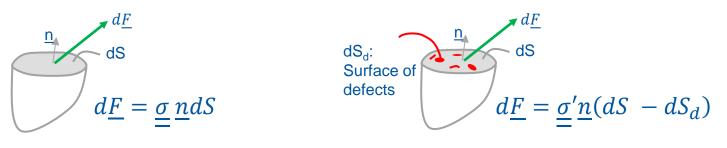
Consistency equation: df = 0

The isotropic hardening is non linear and reaches a saturation level. Isotropic and kinematic hardening can be mixed.

Continuum Damage Mechanics



Effective stress and damage variable



The damage parameter is defined by $D = \frac{dS_d}{dS}$ \rightarrow D=0 : Virgin structure; D=1: crack initiation

$\underline{\sigma}'$: effective stress tensor

$$\underline{\underline{\sigma}}' = \frac{\underline{\underline{\sigma}}}{1-D}$$

Continuum Damage Mechanics

Strain equivalence principle:

$$\underline{\underline{\sigma}} = \underline{\underline{C}}(1-D): \underline{\underline{\varepsilon}}^{e}$$
$$E' = E \cdot (1-D)$$

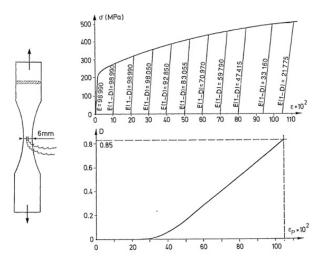


Fig. 1.16. Measurement of ductile damage on 99.9% copper at room temperature (after J. Dufailly)

Continuum Damage Mechanics

Damage evolution

Y: Strain energy density release rate

$$Y = \frac{\partial \psi}{\partial D} = \frac{1}{2} \underbrace{\underline{\varepsilon}}^e : \underbrace{\underline{C}} : \underbrace{\underline{\varepsilon}}^e$$

For ductile material:

$$Y = \frac{1}{2E} \underbrace{\frac{\sigma_{VM}^2}{(1-D)^2}}_{0} \left[\frac{2}{3} (1+\nu) + 3(1-2\nu) \left(\frac{\sigma_h}{\sigma_{VM}} \right)^2 \right]$$

Effective Von Mises stress

Triaxiality ratio

This relation can be generalized to:

$$\Delta \varepsilon = \Delta \varepsilon^e + \Delta \varepsilon^p = \frac{C_2}{E} N_f^{-1/\gamma_2} + C_1 N_f^{-1/\gamma_1}$$

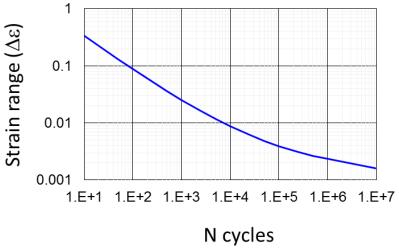
 $dD = \frac{Y}{S}dp$

Leading to the Manson-Coffin law used in Low cycle fatigue:

$$N_f(\Delta \varepsilon^p)^{\beta} = Cst$$

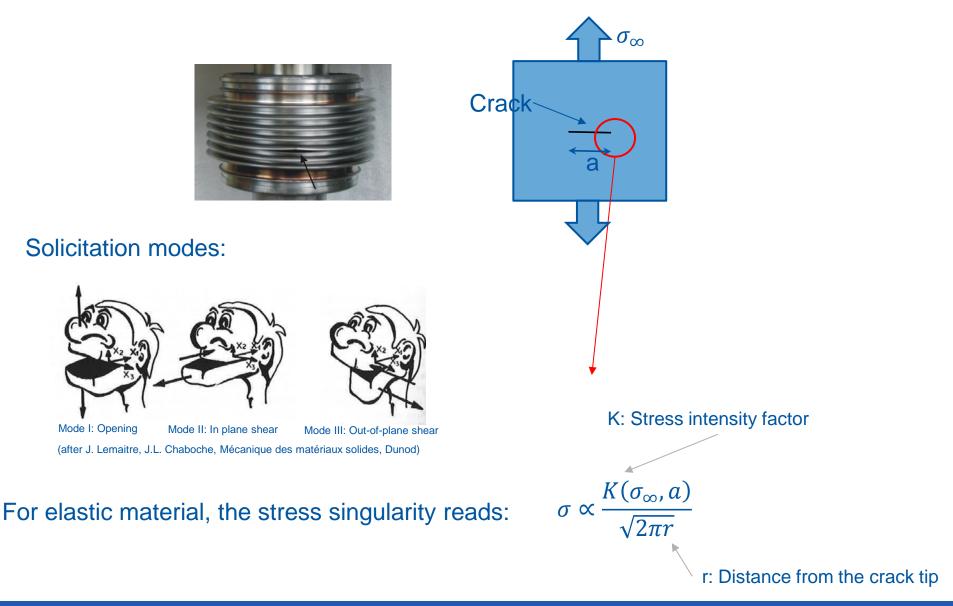
Universal slope equation:

$$\Delta \varepsilon = 3.5 \frac{\sigma_m}{E} N_f^{-0.12} + D_u^{0.6} N_f^{-0.6}$$



Typical curve for stainless steel

Fracture Mechanics

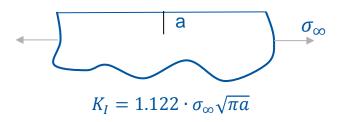


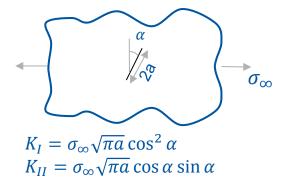
Fracture Mechanics

For elastic material, the stress singularity reads:

$$\sigma \propto \frac{K(\sigma_{\infty}, a)}{\sqrt{2\pi r}}$$

K is in the form $K = f \cdot \sigma_{\infty} \sqrt{\pi a}$.



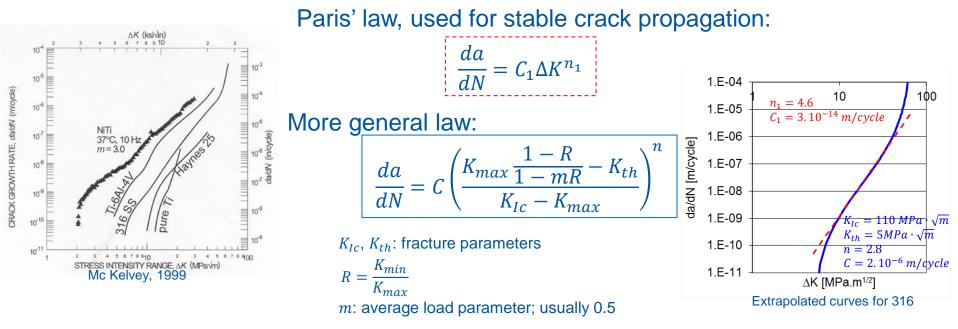


In a more global approach [Griffith], the energy release rate is defined as: $G = -\frac{\partial \wp}{\partial a}$ Criterion: $G \ge G_c$: crack propagation

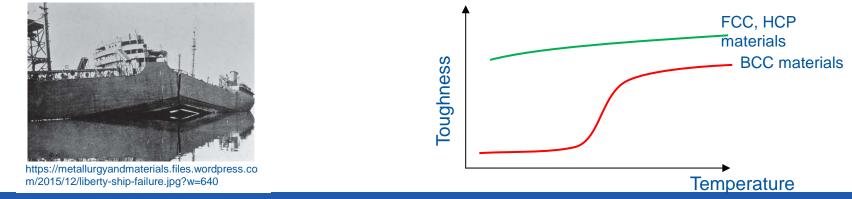
For elastic material,
$$G = \frac{K^2}{E}$$

Fracture Mechanics

Fatigue crack propagation:



Material may exhibit ductile to brittle transition



Plan

1. Material modelling

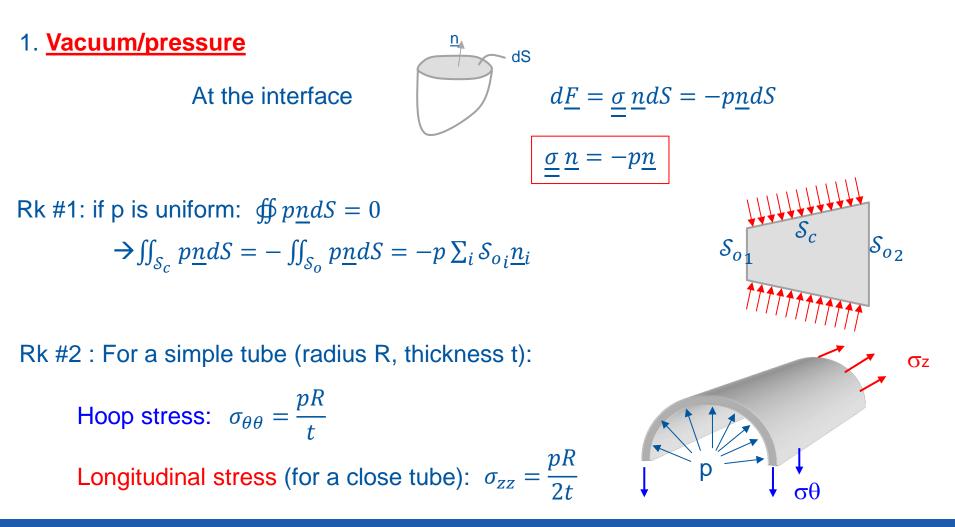
- a. Basic notions of material behaviours and strength
- b. Stress/strain in continuum mechanics
- c. Linear elasticity
- d. Plasticity
 - i. Yield surface
 - ii. Hardening
- e. Continuum damage mechanics
- f. Failure mechanics

2. Structural mechanical analysis

- a. Vacuum chamber
 - i. Loads on a chamber
 - ii. Equilibrium equations
 - iii. Stress on tube
 - iv. Instability (buckling)
- b. Vacuum system as mechanical system
 - i. Support unbalanced force
 - ii. Stability (column buckling)
- 3. Selection criteria of materials
 - a. Figures of merit of materials
 - b. Some material properties
 - c. Some comparisons based on FoM
- 4. Conclusion

Loads on a Vacuum Chamber

0. **<u>Gravity</u>**: specific force: $f_v = \rho g$



Loads on a Vacuum Chamber

2. Electro magnetic forces

Foucault's currents are governed by Maxwell's equation:

In a long structure, subjected to the magnetic field B:

rot E=- $\partial B/\partial t$ **j = Ε**/ρ

B(x,y,t) Maxwell's equation $E_{z}(x,y,t) \sim B'$ **B**(x,y,t) **B**(x,y,t) Ohm's law f_∨=j∧B $j_z = E_z/\rho$ $f_v \sim B'B$ Laplace's law Vacuum, Surfaces & Coatings Group **Technology Department** C. Garion, CAS Vacuum, Lund, 7th June 2017

Orders of magnitude for cryogenic applications (beam screen)

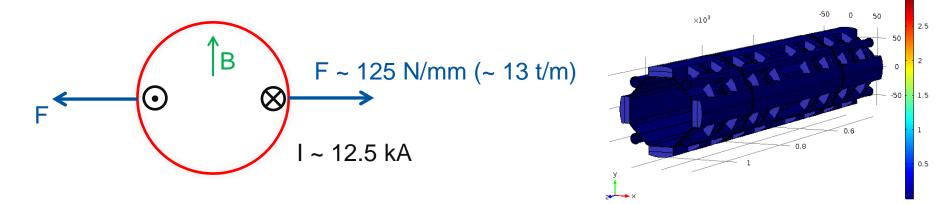
For a given magnetic configuration, force intensity ~ t/ρ

For a (colaminated) copper/stainless steel beam screen at cryogenic temperature:

 $(t/\rho)_{st.st.} / (t/\rho)_{Cu} \sim (1/5E-7)/(0.1/1E-9) \sim 0.02$

 \rightarrow Lorentz' force are driven by copper

In a copper tube, 0.1 mm thick, radius of 25 mm, subjected to a magnetic field of 10 T with a decay of 100 T/s:



Mechanical Problem Formulation:

Equilibrium equations in static conditions:

 $\underline{div} \, \underline{\sigma} + \underline{f}_{v} = \underline{0} \text{ in } \Omega$ $\underline{\sigma} \, \underline{n} = \underline{F}_{s} \text{ on } \mathcal{S}_{f}$

Sr Q Sd

Kinematic:

boundary conditions: $\underline{u} = \underline{u}_{imposed}$ on S_d

$$\underline{\underline{\varepsilon}}(\underline{u}) = \frac{1}{2} \cdot \left[\underline{\underline{grad}}(\underline{u}) + \underline{\underline{grad}}^{T}(\underline{u})\right] \text{ in } \Omega$$

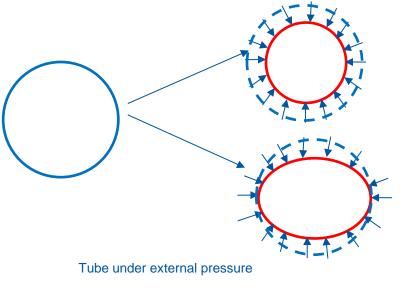
Constitutive model:

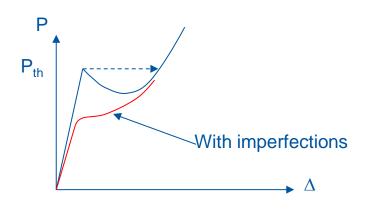
- Constitutive law: $\underline{\sigma} = \underline{\underline{C}} : \underline{\underline{\varepsilon}}^e$ with $\underline{\underline{\varepsilon}}^e = \underline{\underline{\varepsilon}} \underline{\underline{\varepsilon}}^{th} \underline{\underline{\varepsilon}}^p \dots$
- Plasticity or other

→ Mechanical solution: \underline{u} , $\underline{\sigma}$

Design Criteria

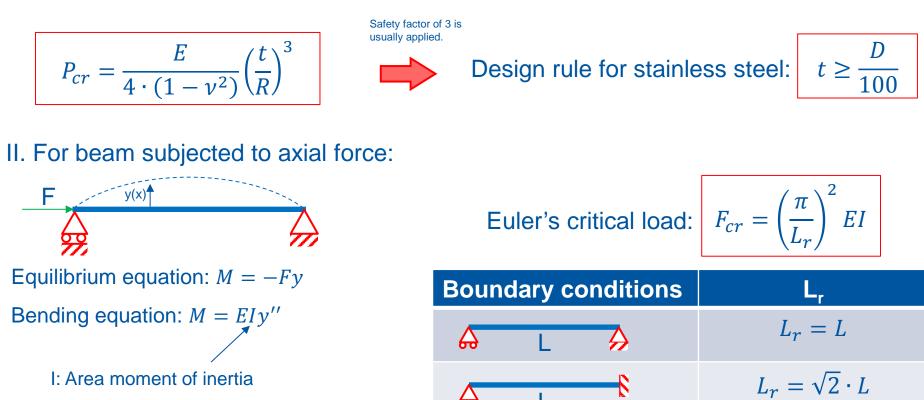
- → <u>Material</u> criterion:
 - Maximum stress,
 - Elastic regime,
 - fatigue, ...
- → <u>Structural</u> criterion:
 - Maximum deformation,
 - Stability





Structural Stability

I. For an infinite elastic tube subjected to external pressure:



 $\sim \pi d^3 t/8$ for a tube

wh³/12 for a rectangular cross section

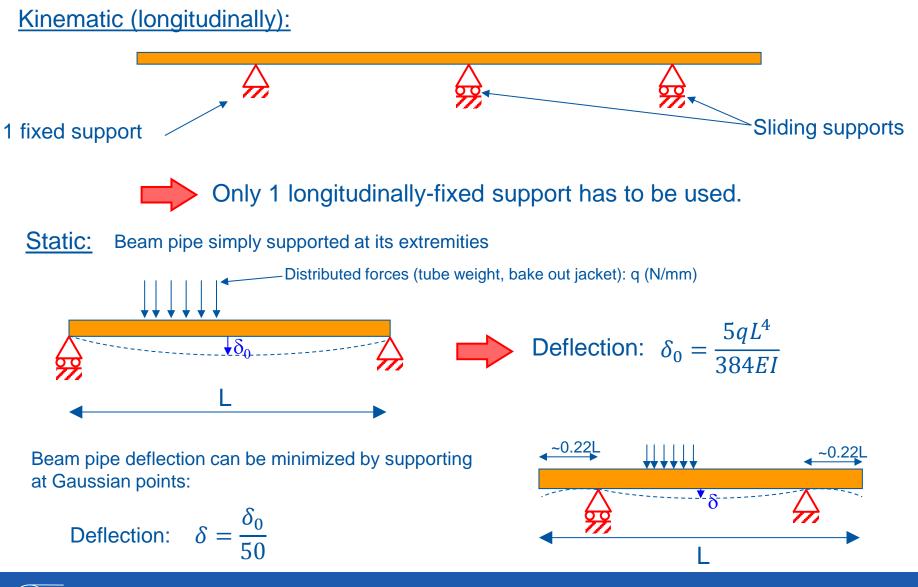
 \rightarrow Differential equation: EIy'' + Fy = 0



 $L_r = 0.5 \cdot L$

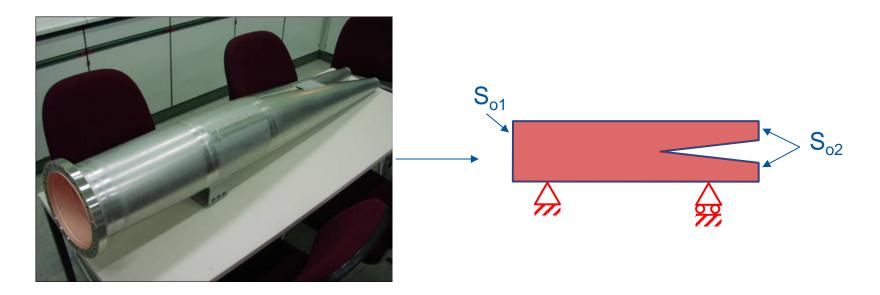
 $L_r = 2 \cdot L$

Mechanical System - Supports



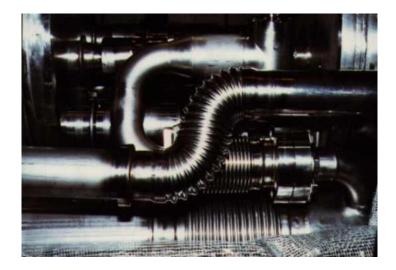
Mechanical System - Supports

Static : Pressure thrust force



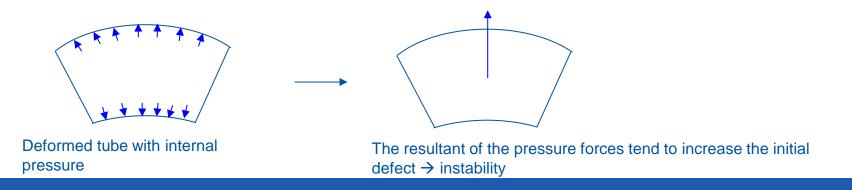
$$\underline{F}_{\rightarrow supports} = p \sum_{i} S_{o_i} \underline{n}_i \qquad P = 0.1 \text{ MPa}$$

Mechanical System – Global stability

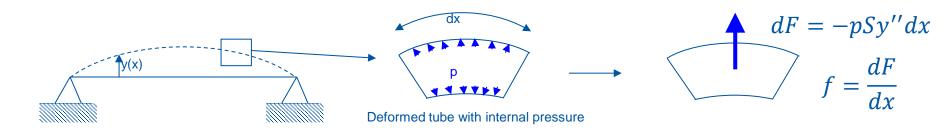


Global stability: the bellows and adjacent lines are unstable

This phenomenon can occur for a line under internal pressure (not necessary with a bellows).

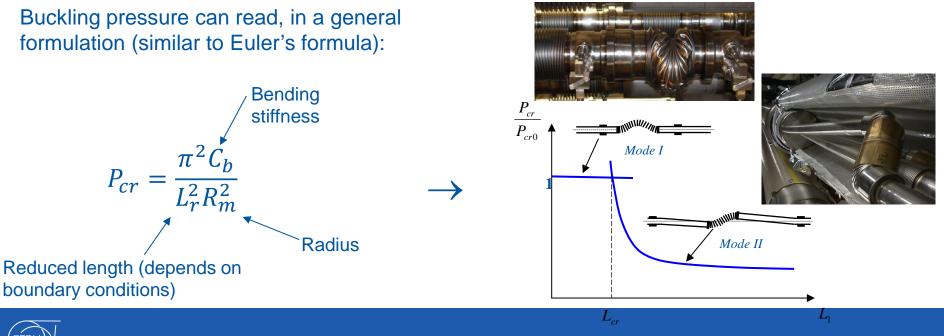


Mechanical System – Global stability



Equilibrium equation (for a tube slice): M'' - f = 0Bending equation: M = EIy'' → Differential equation: $EIy^{(4)} + pSy'' = 0$

Solutions depends on boundary conditions



Plan

1. Material modelling

- a. Basic notions of material behaviours and strength
- b. Stress/strain in continuum mechanics
- c. Linear elasticity
- d. Plasticity
 - i. Yield surface
 - ii. Hardening
- e. Continuum damage mechanics
- f. Failure mechanics
- 2. Structural mechanical analysis
 - a. Vacuum chamber
 - i. Loads on a chamber
 - ii. Equilibrium equations
 - iii. Stress on tube
 - iv. Instability (buckling)
 - b. Vacuum system as mechanical system
 - i. Support unbalanced force
 - ii. Stability (column buckling)

3. Selection criteria of materials

- a. Figures of merit of materials
- b. Some material properties
- c. Some comparisons based on FoM

4. Conclusion

A few Selection Criteria

Figures of merit:

Several figures of merit, <u>characterizing the material</u>, can be used depending on the final application.

- Mechanical Stability for transparent vacuum chamber: $X_0 E^{1/3}$
- Mechanical Stability for vacuum chamber subjected to $\rho E^{1/3}$ fast magnetic field variation:

For beam-material interaction induced heating:

- Temperature rise in transient regime: $X_0. \rho. C. T_f$
- Thermal fatigue:

$$\frac{X_0.\,\rho.\,C.\,\sigma_y}{E.\,\alpha}$$

• Temperature rise in steady state:

 $X_0.\lambda.T_f$

Some Material Properties

		Beryllium	Aluminium	Titanium G5	316L	Copper	Inconel
Density	g·cm ^{−3}	1.85	2.8	4.4	8	9	8.2
Heat capacity	J⋅K ^{−1} ⋅Kg ^{−1}	1830	870	560	500	385	435
Thermal conductivity	W·K ^{−1} ·m ^{−1}	200	217	16.7	26	400	11.4
Coefficient of thermal expansion	10 ⁻⁶ ·К ⁻¹	12	22	8.9	16	17	13
Radiation length	cm	35	9	3.7	1.8	1.47	1.7
Melting temperature	К	1560	930	1820	1650	1360	1530
Yield strength	MPa	345	275	830	300	200	1100
Young modulus	GPa	230	73	115	195	115	208
Electrical resistivity	10 ⁻⁹ ·Ω·m	36	28	1700	750	17	1250

Indicative values at room temperature

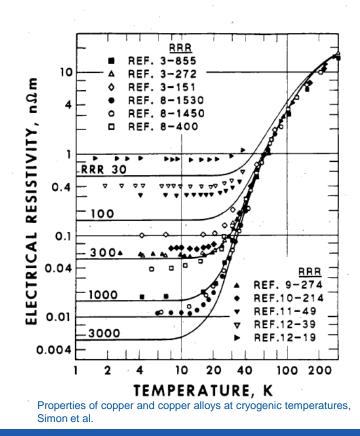
Some Material Properties

Some properties depend strongly on temperature or grade or delivery state (annealed, hard,...).

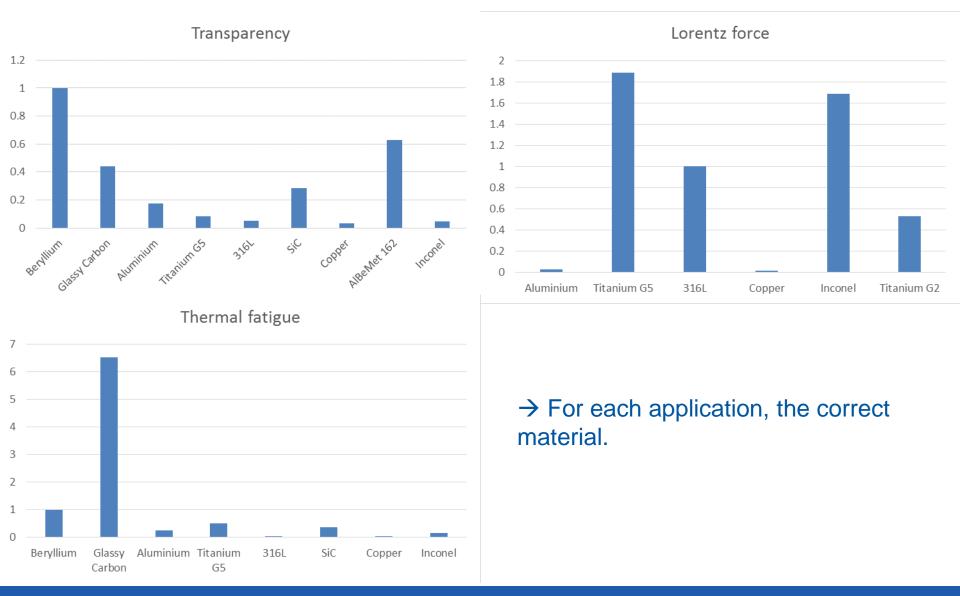
Just two examples:



Yield strength of aluminium alloys as a function of temperature



Few Figures of Merit



Conclusion

Most of the time, the mechanical design of a vacuum system is not really complex.

The choice and the knowledge the materials are important to get a robust and reliable mechanical system at the right price.

