

Reconstruction of mass spectra on the basis of partial pressures

Paolo Chiggiato & Berthold Jenninger

Reconstruction of mass spectra on the basis of partial pressures

Why reconstructing ?

- Visual: Analyser resolution, noise, offset and artefacts can be included

- RGA are NOT ideal instruments:

High uncertainties in gas the specific sensitivities and fragmentation . Reconstruction by assimilation to measured spectrum is an alternative to solving (by deconvolution) for partial pressures.

- Simulation allows training of personal on many cases without need for measurements.
- Check for suspected contaminants by adding fragmentation pattern of suspected component to library

<u>- Convincing</u>, if residual gas composition is well identified. Discussions on acceptance can be more specific.

Some definitions used here

Sensitivity ion gauge:

$$\beta_n = \frac{\Delta I_{c,n}}{I_e \ \Delta P_n}$$

Proportionality factor of the measured chande in collector current $I_{c,n}$ as a reaction to a change in the partial pressure of a gas species **n** divided by the electron emission current I_e .

Sensitivity residual gas analyser RGA:

$$\alpha_n = \frac{\Delta I_{M,n}}{\Delta P_n}$$

Proportionality factor of the measured detector current at mass **M** as a reaction to a change in the partial pressure of a gas species **n**. If **M** is not indicated, it refers ot mass with maximum intensity in fragmentation pattern.

Normalised or relative sensitivity:

$$f_{n-N_2} = \frac{\beta_n}{\beta_{N_2}}$$

$$\eta_{n-N_2} = \frac{\alpha_n}{\alpha_{N_2}}$$

Sensitivity of an **lon gauge** to a gas species with respect to the sensitivity for nitrogen (here)

Sensitivity of an **RGA** to a gas species with respect to the sensitivity for nitrogen (here)

Mass spectrum: Measurement of Ion detector current as functin of *m/z*

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

Equations for all masses

$$\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_z \end{bmatrix} = \begin{bmatrix} c_{1,a} \\ c_{2,a} \\ \vdots \\ c_{z,a} \end{bmatrix} \alpha_a P_a + \begin{bmatrix} c_{1,b} \\ c_{2,b} \\ \vdots \\ c_{z,b} \end{bmatrix} \alpha_b P_b + \begin{bmatrix} c_{1,c} \\ c_{2,c} \\ \vdots \\ c_{z,c} \end{bmatrix} \alpha_c P_c + \dots + \begin{bmatrix} c_{1,N} \\ c_{2,N} \\ \vdots \\ c_{z,N} \end{bmatrix} \alpha_N P_N$$

Reconstruction of mass spectra on the basis of partial pressures

Whole spectrum expressed in simple mathematical form using matrices and vectors.

Equation for spectra simulation with <u>C</u> as <u>fragmentation pattern library</u> and partial pressures in vacuum system.

e CERN Accelerator

1.00E-06

1.00E-07

1.00E-08

1.00E-09

1.00E-10

1.00E-11

1.00E-12

1.00E-13

1.00E-14

1.00E-15

≤

Reconstruction of mass spectra on the basis of partial pressures

Bar graph spectrum

1.00E-15

10

20

30

40

50 Mass [amu]

The CERN Accelerator School

Reconstruction of mass spectra on the basis of partial pressures

Cross-check: Comparison with ionization gauge

$$P_{tot} = \sum_{n=1...N} P_n$$

 P_n Partial pressure of species **n**

 I_c BA-gauge collector current

 I_{ρ} BA-gauge emission current

 eta_n Sensitivity of BA gauge to species n [mbar¹]

 \mathcal{K}_{n-N_2} Relative sensitivity of BA gauge to with respect to N₂

Collector current is sum of the contribution of all partial pressures multiplied by their respective sensitivity

 $I_c = I_e \sum_{n=1...N} \beta_n P_n$

$$\frac{I_c}{I_e \beta_{N_2}} = \sum_{n=1\dots N} \frac{\beta_n}{\beta_{N_2}} P_n$$

$$P_{N_2-eq.} = \sum_{n=1...N} \kappa_{n-N_2} P_n$$

$$N_2$$
-equivalent pressure indication
$$P_{n_RGA}$$
Cross-check

RGA

Comparing relative sensitivities

QMS for UHV applications

Normalised sensitivity for different quadrupole mass spectrometers (QMS) at <u>factory settings</u>

-> High dispersion at low masses

γ_{n-N_2} with mass
Opposite to ion gauges
lonisation cross-section + extraction + transmission probability
<u>RGA</u>: Sensitivity to <u>reference peaks</u> of fragmentation patterns
lon gauges collects all fragments
When comparing with ion gauges sum up all fragments of a residual gas component

Ion gauges

κ_{n-N_2}	
Gas	f_c
He	0.18
Ne	0.3
Ar	1.29
Kr	1.94
Xe	2.87
H ₂	0.46
N ₂	1
0 ₂	1.01
Air	1
СО	1.05
H₂O	1.12
CO ₂	1.42
CH ₄	1.4
C₂H ₆	2.6
C ₃ H ₈	4.2
Uncertainty < 20 %	

Ratio mainly determined by ionisation cross-section

Measured / reconstructed mass spectrum

Spectrum can be fully explained with presence of <u>Fluorine</u> + known composition in hot ion source (C, O, H, Fe, Cr)

ISO 14291: Vacuum gauges — Definitions and specifications for quadrupole mass spectrometers

ISO/NP TS 20175 (in preparation): Vacuum technology -- Vacuum gauges - Calibration of quadrupole mass spectrometers for partial pressure measurement

ISO/NP TS 20177 (in preparation): Vacuum technology - Vacuum gauges -- Procedures to measure and report outgassing rates.

NOW

Exercise: Reconstructing a measured mass spectrum