

Mechanical & Material Aspects - Tutorial Group 3

PRESENTED BY MARCO MORRONE

Project outline

Design the mechanical system of a room temperature [operating] vacuum system for a circular collider with high intensity proton beams.

- 1. Inner diameter [circular aperture] = 100mm
- 2. Length of vacuum chamber = 10m
- 3. Operating temperature = 20°C
- 4. Maximum temperature = 230°C
- 5. External pressure = atmospheric pressure [1 atm]
- 6. Internal pressure = <10⁻⁹ mbar
- No magnetic field

Temperature induced Forces

Thermal deformation $\varepsilon = \alpha \Delta T$

Thermal expansion $\Delta l = \varepsilon l$

Thermal stress $\sigma = E \varepsilon$

The bellows are needed to allow the thermal expansion and for alignment purposes.

	Thermal		Thermal stress		
Material	deformation	dl [mm]	[MPa]	sigma y [MPa]	Cost [€/kg]
Copper OF	0.00357	35.7	410.55	35	~25-40
Aluminium	0.00462	46.2	355.74	393	~15
Stainless steel					
316 L	0.00336	33.6	655.2	240	~11-32
Titanium					
Grade 5	0.001869	18.69	214.94	880	~50

Structural stability

For an infinite elastic tube subjected to external pressure:

$$P_{cr} = \frac{E}{4 \cdot (1 - v^2)} \left(\frac{t}{R}\right)^3$$

Safety factor of 3 is usually applied.

Design rule for stainless steel:

$$t \ge \frac{D}{100}$$

For the 316 L ss chamber the minimum thickness to avoid the tube to collapse is around 1 mm.

The thickness decided for the chamber is **1.5 mm** (only available thickness for d=100 standard tube).

$$\sigma_1 = \frac{pD}{2t}$$
 =3.3 MPa

 σ_2 = negligible because of the bellow

Chamber supports

- -2x sliding supports
- -1 x fixed support

Finite elements modelling

Self-weight deformation

Bellows specification

- Total chamber expansion during bake-out = 33.6 mm
- 2x individual bellows chambers to be installed at each end of the chamber
- Using standard industry item

Spec:

- UHV specification
- 316L bellow hydroformed
- DN100CF 316LN ESR 3D forged flanges (1x rotatable)
- Ø_{inner} 100mm
- Convolutions needed = 2*thermal displacement / convolution stroke (6.5 mm) = 11

Bellows specification

Chamber Manufacture

- Stainless steel tube [Ø100mm],
 - Typical length of tube 6m,
 - 100% weld penetration orbital 6 + 4 m (due to length)
- Internal welding DN100CF flanges
- Fixed support bracket to be mounted on the chamber
- Leak detection
- UHV cleaning to CERN specification EDMS:1626970
- Copper electroplating to reduce the impedance seen by the beam
- NEG coating for distributed pumping.

Chamber Max 4 - Experiment room

Chamber Max 4 - Experiment room

Chamber Max 4 - Experiment room

Meet the Team: Tutorial Group 3

First Name	Last Name	Institute
Jon	Azpeitia	ESS Bilbao
Didier	Chirpaz-Cerbat	CEA/DRF/Irfu/SACM/LEDA
Vojtech	Dolezal	Thermo Fisher Scientific
Artur	Gevorgyan	CELLS-ALBA
Anthony	Harrison	CERN
Volker	Hauer	Karlsruhe Institute of Technology
Lennart	Knebel	DESY
Eliana	La Francesca	INFN-LNF
Marco	Morrone	CERN
Manuele	Narduzzi	CERN
Esa	Paju	Lund University / Max IV
Valentine	Petit	GSI
Ulrich	Рорр	ESR
Thibaut	Richard	CERN
Andre	Rocha	CERN
Hilko	Spoelstra	European Spallation Source ERIC

References

- Materials & Properties I: Introduction. CAS, Vacuum for Particle Accelerators 2017
 Dr. Stefano SGOBBA (CERN)
- Materials & Properties II: Thermal & Electrical Characteristics. CAS, Vacuum for Particle Accelerators 2017
 Dr. Cedric GARION (CERN)
- Surface Cleaning & Finishing. CAS, Vacuum for Particle Accelerators 2017
 Dr. Mauro TABORELLI (CERN)

Material selection

	Copper OF annealed	Al-6082-T6	Stainless steel 316L	Titanium Ti-6Al-4V (Grade 5)
Density	8950 kg/m³	2830 kg/m³	7970 kg/m3	4430 kg/m3
Young's modulus	115 GPa	77 GPa	195 GPa	115 GPa
Yield strength	35 MPa	393 MPa	240 MPa	880 MPa
Thermal expansion coefficient	17 · 10⁻⁶ 1/K	22 · 10 ⁻⁶ 1/K	16 · 10 ⁻⁶ 1/K	8.9 · 10 ⁻⁶ 1/K

Esr to reduce inclusions