
Breaking the Monolith
An example of micro-services
for sync and share based on

ClawIO

Hugo González Labrador
CERN IT-ST

CS3 2017 SURFSara The NetherlandsHugo Gonzalez Labrador CERN IT-ST CS3 SurfSARA 2017

Outline

• Introduction

• The monolith

• Micro-Services Architecture Requirements

• ClawIO

• Monolith vs MSA

• Conclusion

Introduction

• Micro services is an architecture that
structures the application as a set of loosely
coupled, collaborating services using
lightweight network protocols.

• Has been adopted successfully by big
companies

• Lot of hype

Objective

• Many of today open source sync and
share platforms run as monolithic
applications

• Is it feasible to move to a MSA for sync
and share? What are the costs? Are there
any benefits?

• Let’s build something to see

The Monolithic Sync and Share Approach

synchronisation

sharing

web UI

authentication

authorization

caching

3rd party integrations

data management

many more +

Storage System DataBase AD/LDAP 3rd Party Service

Scaling the Monolith

Storage System DataBase AD/LDAP 3rd Party Service

Monolith #1 Monolith #2 Monolith #3

Load Balancer

Pros and Cons of the Monolith

• No network penalty for component interactions

• Simpler deployments (self-contained)

• Cross-boundary overhead

• Complexity (large codebase)

• Different resource requirements (memory, cpu, IO)

• Adhering to agile principles is difficult

• Larger deployment times

• Requires a long commitment to a technology stack

• Expensive to adopt new technologies (rewriting is expensive)

Anecdote

In August of 2008, Netflix experienced a major database
corruption for three days.

That day they realized that had had to move away from
vertically scaled single point of failure, towards highly

reliable, horizontally scalable, distributed systems in the
cloud

https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration

https://media.netflix.com/en/company-blog/completing-the-netflix-cloud-migration

Micro-Services-Architecture for Sync And Share

Storage

DataBase

AD/LDAP

metadata management

sharing

authentication

authorization

web UI

synchronisation

3rd party integrations

many more +

data management

Some Key Technical Requirements

• Stateless is key for scaling out

• Service Discovery and Registration

• Health Checks

• Distributed Tracing

Tech Req (Stateless => Scaling-Out)

Service A
cluster

User

Tech Req (Stateless => Scaling-Out)

Service A
cluster

User

req #1

Tech Req (Stateless => Scaling-Out)

Service A
cluster

User

req #1

node #8

Tech Req (Stateless => Scaling-Out)

Service A
cluster

User

req #1

node #8

node #3

req #2

Tech Req (Service Discovery and Registration)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Tech Req (Service Discovery and Registration)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Service Registry
192.168.99.99:9999

Rol Socket

Tech Req (Service Discovery and Registration)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Service Registry
192.168.99.99:9999

Rol Socket

service A 192.168.1.1:1001

service B 192.168.2.2:2002

1. register 1. register

Tech Req (Service Discovery and Registration)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Service Registry
192.168.99.99:9999

Rol Socket

service A 192.168.1.1:1001

service B 192.168.2.2:2002

1. register 1. register

2. get me a socket for service B

Tech Req (Service Discovery and Registration)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Service Registry
192.168.99.99:9999

Rol Socket

service A 192.168.1.1:1001

service B 192.168.2.2:2002

1. register 1. register

2. get me a socket for service B

3. talk to the socket received

Tech Req (Health Check)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Service Registry
192.168.99.99:9999

1. I am alive

Rol Socket TTL

service A 192.168.1.1:1001 19

service B 192.168.2.2:2002 5

1. I am alive

Tech Req (Health Check)

Service A
192.168.1.1:1001

Service B
192.168.2.2:2002

Service A wants to communicate with Service B,
but what socket is using Service B?

Service Registry
192.168.99.99:9999

1. I am alive

Rol Socket TTL

service A 192.168.1.1:1001 19

service B 192.168.2.2:2002 5

2. No more keep alive

Tech Req (Distributed tracing)

Service A Service B

User sends a request to Service A and various
services are involved in the request.

Big ops problem if no tracing is available in a MSA

The solution is to send a trace identifier from service to service

Service C

Service D

Service E

Service F

User

tid=abc tid=abc

tid=abc

tid=abc

tid=abc

Pros and Cons of the MSA

• Independent and loosely coupled services

• Easy to add new features

• Better resource allocation (memory, cpu, IO)

• Small codebase

• Cheap to adopt new technologies and mix them

• Fit into agile pipelines (code, test, deploy)

• Go hand by hand with platforms like Docker and Kubernetes

• Ensure better long-term system stability

• Network penalty

• Requires instrumentation around (service discovery, tracing …)

Building a testing sync MSA with ClawIO

• Swiss-Army-Knife for my ideas

• Presented last year at CS3 Zurich as a benchmarking platform for
OC sync performance

• Configurable and modular server daemon
(MSA and monolith modes)

• Prototyped Web Application and CLI

• Written in Go, one binary, no dependencies

• Very easy to use (clawiod -conf my.conf)

• OpenSource (github.com/clawio/clawiod)

http://github.com/clawio/clawiod

ClawIO Web Services APIS

• POST /data/upload

• POST /data/download

• POST /meta/examine

• POST /meta/list

• POST /meta/createfolder

• POST /meta/move

• POST /meta/rm

• POST /auth/token

• POST /auth/ping

• GET /ocwebdav/

• PUT /ocwebdav/

• PROPFIND /ocwebdav/

• …

da
ta

m
et

ad
at

a
au

th
oc

 w
eb

da
v

• RPC oriented

• Dropbox API v2 style

• Very simple

• Very lightweight

TestBed for ClawIO in Monolith Mode
Lo

ca
l S

to
ra

ge
 +

 D
B

Monolith #1

clawiowebdavbench

WebDAV

 1 Gbps link

BOX A

Testbed for ClawIO in Micro-Services-Architecture Mode

ClawIO Data Nodes
cluster

ClawIO MetaData Nodes
cluster

ClawIO Auth Nodes
cluster

ClawIO OwnCloud WebDAV Proxy

Lo
ca

l S
to

ra
ge

 +
 D

B
LD

A
P

or
 m

em
or

y

clawiowebdavbench

WebDAV

 1 Gbps link

HTTP

 1 Gbps links

BOX A BOX B

CONCURRENCY MONOLITH MSA x 1 MSA x 2 MSA x 3

1 114 Hz

100 685 Hz

200 793 Hz

400 916 Hz

WebDAV PROPFIND Test

5000 requests per test with different number of concurrent clients
The payload is a few KB, to observe better network influence

CONCURRENCY MONOLITH MSA x 1 MSA x 2 MSA x 3

1 114 Hz 98 Hz

100 685 Hz 524 Hz

200 793 Hz 637 Hz

400 916 Hz 772 Hz

WebDAV PROPFIND Test

5000 requests per test with different number of concurrent clients
The payload is a few KB, to observe better network influence

CONCURRENCY MONOLITH MSA x 1 MSA x 2 MSA x 3

1 114 Hz 98 Hz 98 Hz

100 685 Hz 524 Hz 714 Hz

200 793 Hz 637 Hz 799 Hz

400 916 Hz 772 Hz 1 KHz

WebDAV PROPFIND Test

5000 requests per test with different number of concurrent clients
The payload is a few KB, to observe better network influence

CONCURRENCY MONOLITH MSA x 1 MSA x 2 MSA x 3

1 114 Hz 98 Hz 98 Hz 78 Hz

100 685 Hz 524 Hz 714 Hz 893 Hz

200 793 Hz 637 Hz 799 Hz 956 Hz

400 916 Hz 772 Hz 1 KHz 1,05 KHz

WebDAV PROPFIND Test

5000 requests per test with different number of concurrent clients
The payload is a few KB, to observe better network influence

Some Preliminary Conclusions

• MSA for sync and share could be used with a
distributed storage to benefit from parallel
access from data and metadata nodes

• A MSA could allow to efficiently use your data
center resources fitting services to hardware

• MSA should play well with a containerized
infrastructure

Thank you

