GPU-Accelerated Deep Neural Networks in
TMVA

Simon Pfreundschuh
Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Google

Summer of Code A

1/ 38

Outline

Introduction

Implementation

Verification and Testing
Performance

Application to the Higgs Dataset
Summary and Future Outlook

Acknowledgments

Introduction

Motivation

e Deep learning techniques have been revolutionizing the field of
machine learning.

e Their success is closely related to the development of
massively parallel accelerator devices, which allow for efficient
training of machine learning models.

e Deep learning techniques have successfully been applied to
problems in HEP?.

Aim
Provide an efficient and easy-to-use implementation of deep neural
networks for the HEP community.

"http://arxiv.org/pdf/1402.4735v2. pdf

http://arxiv.org/pdf/1402.4735v2.pdf

Feed Forward Neural Networks

Feed Forward Neural Networks

Feed Forward Neural Networks

u = f(Wix+61)

Feed Forward Neural Networks

u = f(Wix+61) ux=f(Wau +6,)

Feed Forward Neural Networks

u = f(Wix+61) uy=f(Weur+862) uz=f(Wsus+6s)

5/ 38

Feed Forward Neural Networks

u =f(Wix+0)) u=f(Wou +63) uz=f(Wsuz+63) uy=f(Wyuy+6y)

5/ 38

Feed Forward Neural Networks

u =f(Wix+0)) u=f(Wou +63) uz=f(Wsuz+63) uy=f(Wyuy+6y)

5/38

Feed Forward Neural Networks

o A feed forward neural network is defined by a set of layers
I=1,...,n, each with an associated weight matrix W/, bias
terms 6, and activation function f;.

e Feed forward: Neurons of a given layer | are only connected
to neurons of the layer / 4+ 1

o A neural network may be viewed as a function

F(x,W.,8) = fo (foa (-)Wy + 802) W] 468, (1)

Feed Forward Neural Networks

A feed forward neural network is defined by a set of layers
I=1,...,n, each with an associated weight matrix W/, bias
terms 6, and activation function f;.

Feed forward: Neurons of a given layer / are only connected
to neurons of the layer / 4+ 1

A neural network may be viewed as a function

F(x,W.,8) = fo (foa (-)Wy + 802) W] 468, (1)

Machine Learning: Find parameters W, 6 so that

F(x) = F(x,W, 8) approximates either a target function G(x)
(Regression) or a likelihood measure for a given class
(Classification).

Neural Network Training

e Supervised learning: The network is trained using a training
set consisting of inputs X = xg, ..., X, and outputs
Y =Y0,--s¥n.

e The loss function or error function J(y, y) quantifies the
quality of a prediction y with respect to the expected output
y.

e Learning as a minimization problem:

1
- . —— ~ 2
mlnvlvrryze Jy n;J(yaY) (2)

Neural Network Training (Contd.)

e Use gradient-based minimization methods to minimize the
error v J(y,¥) over the training set:

dJy

W—W-—-ao—=
— adW (3)

dJy
0+0—a—— 4
— adG (4)

e Batch gradient descent: Instead of the whole training set,
compute the gradient only for a small subset of it.

e Crucial for scalable training on large data sets.

Forward and Backward Propagation

Forward Propagation:
Up = fo (Up-1W, +67)
£ —f (un,lwn v eT)

Backward Propagation:

.
dJy <f,®dJX> U

dW,, "= du,

dJy dJx\ T
— (¢ 1

de, (”Qdu,,>

dJy dJy
f W,
dU, (n® dU,,)

Forward and Backward Propagation

oo .-
1,0 -

Tn,0 ---

‘7,\' ‘Ix

dU, dU,
Lo,m
T1m
W1 W2
Jx Jx
dW, dW 3
Tn,m
01 02
Jx Jx
d6; 62

10/ 38

Forward and Backward Propagation

oo .-
1,0 -

Tn,0 ---

Up = f1 (XWT +6,)

‘7,\' ‘Ix

a0, a0,
Lo,m
T1m
W1 W2
: A3 AP%
AW, aw;
Tn,m
01 02
Jx Jx
a8, s

10/ 38

Forward and Backward Propagation

Ui = fi (XWT +6)

_
‘L\f Jx
(dUs

dU,
20,0 -+ To,m
Tio ... Tim
W1 W2
: A3 AP%
dW, dW 3
Tno -+ Tnm
01 02
Jx Jx
d6; 62

Uy = f> (Ui W3 +6,)

10/ 38

Forward and Backward Propagation

Uy =fi (XWT+6,) Uy=fo (UWI+6,)

‘Ix
dU, dU

‘7,\,

20,0 -+ To,m
1,0 - Tim JX(%Y)
W1 W2
: A3 AP%
dW, dW 3
Tn,0 -+ Tnm
01 02
Jx Jx
d6; 62

10/ 38

Forward and Backward Propagation

Uy =fi (XWT+6,) Uy=fo (UWI+6,)

‘7,\' ‘Ix

dU, dU,
T0,0 --- To,m \
1,0 - Tim JX(%Y)
W1 W2
: Jx Jx
dW 1 dW>
Tno -+ Tnm
01 02
Jx Jx
a0, a0

10/ 38

Forward and Backward Propagation

Uy = f> (U1 W3 +6,)

‘Ix

dUs

Ui = fi (XWT +6)

Zo,0 .-+ Zo,m
r1,0 .-+ Tlm Jx(y.¥)
W1 W2
: Jx
AW, aw;
Tn,0 -+ Tnm
0, (D)
Vix A
a6, a6
dx (. dJx TU
dW,; 27 dU, !

10/ 38

Forward and Backward Propagation

oo .-
1,0 -

Tn,0 ---

Uy =fi (XWT+6,) Uy=fo (UWI+6,)

‘7,\' ‘Ix

dU, dU,
Lo,m
T1,m Jx (Y7 y)
W1 W2
Jx Jx
dW, dW 3
Tn,m
01 02
Jx Jx
d6; 62

dlx (o dJx\T
a6, (f2u a,) *

10/ 38

Forward and Backward Propagation

Uy =fi (XWT+6,) Uy=fo (UWI+6,)

‘7,\' ‘Ix
dUs

dU,
0,0 -+ Tom v
1,0 - Tim JX(%Y)
W1 W2
-Jx -Jx
dWy dWy
Tn,0 -+ Tnm
01 02
Jx Jx
de; d@s

dJx dJy
Y _(goiX)w
dU; (2 dUg) 2

10/ 38

Forward and Backward Propagation

Uy =fi (XWT+6,) Uy=fo (UWI+6,)

‘7,\' ‘Ix

dU; du,
Zo,0 .-+ Zo,m
1,0 - Tim JX(%Y)
W1 W2
: : Jx e
dW dW
Tn,0 -+ Tnm
_/;1 (2}
Jx Jx
de; 0,

T
dJx _ f{ . dJx X
dW, dU,

10/ 38

Forward and Backward Propagation

Uy =fi (XWT+6,) Uy=fo (UWI+6,)

‘7,\' ‘Ix

dU, dU
Zo,0 .-+ Zo,m
1,0 - Tim JX(%Y)
W1 W2
. Jx Jx
dWy dWy
Tn,0 -+ Tnm
01 02
Jx Jx
de; d@s

T
A (g A\
do, dU;

10/ 38

Implementation

Design

e The backpropagation algorithm can be decomposed into
primitive operations on matrices:

e Matrix multiplication and addition
e Application of activation functions
e Computation of loss and regularization functionals and their
gradients
o General formulation of the backpropagation algorithm using
those primitive matrix operations

e Optimized matrix operations provided by specialized low-level
implementations

Design

TCuda TCpu TOpenCL

Low-level
Interface

13/ 38

Design

TCuda TCpu TOpenCL

OO Model

Low-level
Interface

13/ 38

Design

TrainCPU(...)

TrainGPU(...)

TGradientDescent

IPPOIN OO

TCpu TOpenCL

TCuda

CRIIPER T

[9A3]-MO"]

13/ 38

Design

The Low-Level Interface:
e Implemented by architecture classes: TCuda, TCpu, TOpenCL

o Architecture classes provide matrix and scalar types as well
as host and device buffer types

The Object Oriented Model:

e Generic neural network implementation: Classes are templated
by architecture class.

e The TNet class provides a general implementation of the
backpropagation algorithm.

e The TDataLoader takes care of the streaming of data to the
device.

Dependencies

CPU Implementation:

e BLAS: quasi-standard, various optimized open source
implementations available, possibility to link against vendor
provided implementations when available

e TBB: To be replaced by Root’s ThreadPool class
CUDA Implementation:

e cuBLAS and cuRAND freely available as part of the CUDA
Toolkit

OpenCL Implementation:
e cIBLAS and cIRNG: Part of the cIMath libraries

Verification and Testing

Verification

e The code includes a reference implementation of the low-level
interface based on Root's TMatrix class.

e Generic unit test for all routines in the low-level interface
based on the reference implementation.

e Backpropagation algorithm verified using numerical
differentiation.

e Training routines verified by learning full-rank linear mappings.

Performance

Performance Model

Consider a layer / with n; neurons, n;_1 input neurons and a batch
size of np,.

Forward Propagation:

e Multiplication of weight matrix W, with activations of
previous layer:

ninp(2n;—1 — 1) FLOP
e Addition of bias terms 0;:
nnp FLOP
e Application of activation function f; and its derivatives:

2nnpcs FLOP, c¢r=1

Performance Model

Consider a layer / with n; neurons, n;_1 input neurons and a batch
size of np,.

Backward Propagation
e Hadamard product:
nynp, FLOP
e Computation of previous layer activations:
ni_1np(2n — 1) FLOP
o Computation of weight and bias gradients:

ni—1n(2np — 1) + ny(np — 1) FLOP

Performance Model

Consider a layer / with n; neurons, n;_1 input neurons and a batch
size of np,.

Total:

Z6n/nbn/,1 + 4ninp — n/(n/,l + 1) — npnj_1
/

e Terms involving n;npn;_1 dominate complexity for the hidden
layers.

Benchmarks

e Training Data:
e Randomly generated data from a linear mapping R?° — R
e 10° input samples
o Network structure:
e 5 hidden layers with 256 neurons
e tanh activation functions
e Squared error loss
e Computation of the numerical throughput based on the time
elapsed for performing 10 training epochs.

CPU Performance

Implementation: Multithreaded OpenBLAS and TBB
Hardware: Intel Xeon E5-2650, 8 x 4 cores, 2 GHz, estimated
peak performance per core: 16 GFLOP/s

180
—e— Single Precision —&— Double Precision

[
=)
=]

[
N
=)

[
)
o

100

80

60

40

Numerical Throughput [GFLOP/s]

20

0 2 4 6 8 10
Number of OpenBLAS Threads

GPU Performance (Single Precision)

Network: 20 input nodes, 5 hidden layers with nj, nodes each,
squared error loss

Hardware: NVIDIA Tesla K20, 3.57 TFLOP/s peak performance
(single precision)

1800 51.08

o
o
S
5]

I

o

IS

S

1400 39.73
1200 34.05
1000 28.38

800 2270

@
S
S}

/—/x__\ 17.03
11.35

—— 1, =256 —e— n, =384 —e— n, =512

Numerical Throughput [GFLOP/s]
5
o

N
S
o
<
o
oo
Percentage of Peak Performance [%)]

0.00
1000 1500 2000 2500 3000 3500 4000 4500
Batch Size n,,

no
=]
S

GPU Performance (Single Precision)
Optimization:
e Use compute streams to expose more parallelism to the device.

o Compute gradients for multiple batches in parallel.

e Using 2 streams:

1800 51.08

~
o
S
S

39.73

g

o

a
erformance [%)]

28.380
=
8
2270 &

17.03

11.35

Numerical Throughput [GFLOP/s]

N

S

(=)

o

[=}]

=]
Percentage of

—— p, =256 —— n, =384 —e— p, =512

0 0.00
500 1000 1500 2000 2500 3000 3500 4000 4500

Batch Size n,,

GPU Performance (Double Precision)

Network: 20 input nodes, 5 hidden layers with nj, nodes each,
squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double precision)

1800 153.2

=
15}
S
IS}
=
@
o
N
%]

1400 119.1
1200 102.1

1000 85.1

®
=]
o

-}
=}
S}

IS
S
S}

34.0

Numerical Throughput [GFLOP/s]

N
S
S}

17.0

D
[ee]
Il
Percentage of Peak Performance [%)]

—— 1, =256 —— p, =384 —e— p, =512

0 0.0
500 1000 1500 2000 2500 3000 3500 4000 4500

Batch Size n,,

GPU Performance
Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double)

Time spent in Function [%)]

& . 2 S
& 4'o§\ e 6"& & \)6\(\ 3 © \e?b
» N S IS a
o R S
/@é‘ Vb N &

25/ 38

OpenCL Performance

Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss

Hardware: AMD FirePro W8100, 2.1 TFLOP/s peak performance
(double)

1000 85.11
—e— pj, =256 —e— n, =384 —e— n, —512

800 68.09

600 51.06

400 34.04

200 17.02

Numerical Throughput [GFLOP/s]
Percentage of Peak Performance [%)]

0 0.00
500 1000 1500 2000 2500 3000 3500 4000 4500

Batch Size n,,

Summary

Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss

g

-~
[=}
o

[=1]
[=]
o

g

400

8
S

Numerical Throughput [GFLOP / s]
S
o

100

27/ 38

Application to the Higgs Dataset

The Higgs Dataset

¢ Signal Process:
gg — H° - WEHT - WEWTH — WTWTbb
e Background Process:
gg — tt — WEWThb

e 21 low-level features: Momenta of one lepton and the four
jets, jet b-tagging information, missing transverse momentum

¢ 7 high-level features: Derived invariant masses of
intermediate decay products

e Dataset consisting of 11 million simulated collision events

!See http://arxiv.org/pdf/1402.4735v2. pdf

http://arxiv.org/pdf/1402.4735v2.pdf

Shallow vs. Deep Networks

¢ Shallow Network: 1 hidden layer with 256 neurons and tanh
activation function and cross entropy loss

e Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

e Both networks trained once using only low-level features and
once using both high-level and low-level features.

Shallow vs. Deep Networks

Background Rejection vs. Signal Efficiency

=
2 -
o
21
e -
B L
i
2 L
a0
2
g
0.60 —
0.40 }—
- MVA Method
—— DNN Low
0.20 p e BN
—— DNN Low + High W\
B —— SNN Low \
- |——SNN Low +High
N R T T P SRR
0 0.20 0.40 0.60 0.80 1

Signal Efficiency

31/ 38

Deep Networks vs. BDT

e Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

¢ Boosted Decision Trees: 1000 Trees, maximum depth 3

e Both classifiers trained on low- and high-level features

Method | Training Time [h] | Area under ROC Curve
BDT 4.78 h 0.806
DNN 1.46 h 0.876

Deep Networks vs. BDT

Background Rejection vs. Signal Efficiency

Bagkground Rejection

o
3

(11211 ST A

MVA Method

0201=-1__pBDpT
. |—DNN
oL i L
0 0.20 0.40 0.680 0.80 1

Signal Efficiency

33/ 38

Summary and Future Outlook

Results

Testing and verification of the prototype implementation of
deep neural networks in TMVA.

Production-ready implementation of parallel training of deep
neural networks on CPUs and CUDA-capable GPUs.

Reproduced Higgs benchmark results.

Integrated CPU and CUDA implementations into Root master

Future Outlook

¢ Near Future:
e Finish OpenCL implementation

e Analyze performance on different architectures

e Extend neural network functionality: batch normalization,
activation functions, AdaGrad, ...

Acknowledgments

Acknowledgments

e Project carried out at CERN within the Google Summer of
Code program

e Supervisors: Sergei V. Gleyzer, Lorenzo Moneta

Thank Youl

Summer of Code A

Google

38/ 38

	Introduction
	Implementation
	Verification and Testing
	Performance
	Application to the Higgs Dataset
	Summary and Future Outlook
	Acknowledgments

