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Introduction



Motivation

e Deep learning techniques have been revolutionizing the field of
machine learning.

e Their success is closely related to the development of
massively parallel accelerator devices, which allow for efficient
training of machine learning models.

e Deep learning techniques have successfully been applied to
problems in HEP?.

Aim
Provide an efficient and easy-to-use implementation of deep neural
networks for the HEP community.

"http://arxiv.org/pdf/1402.4735v2. pdf
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Feed Forward Neural Networks

o A feed forward neural network is defined by a set of layers
I=1,...,n, each with an associated weight matrix W/, bias
terms 6, and activation function f;.

e Feed forward: Neurons of a given layer | are only connected
to neurons of the layer / 4+ 1

o A neural network may be viewed as a function

F(x,W.,8) = fo (foa (- )Wy + 802 ) W] 468, (1)



Feed Forward Neural Networks

A feed forward neural network is defined by a set of layers
I=1,...,n, each with an associated weight matrix W/, bias
terms 6, and activation function f;.

Feed forward: Neurons of a given layer / are only connected
to neurons of the layer / 4+ 1

A neural network may be viewed as a function

F(x,W.,8) = fo (foa (- )Wy + 802 ) W] 468, (1)

Machine Learning: Find parameters W, 6 so that

F(x) = F(x,W, 8) approximates either a target function G(x)
(Regression) or a likelihood measure for a given class
(Classification).



Neural Network Training

e Supervised learning: The network is trained using a training
set consisting of inputs X = xg, ..., X, and outputs
Y =Y0,--s¥n.

e The loss function or error function J(y, y) quantifies the
quality of a prediction y with respect to the expected output
y.

e Learning as a minimization problem:

1
- . —— ~ 2
mlnvlvrryze Jy n;J(yaY) (2)



Neural Network Training (Contd.)

e Use gradient-based minimization methods to minimize the
error v J(y,¥) over the training set:

dJy

W—W-—-ao—=
— adW (3)

dJy
0+0—a—— 4
— adG (4)

e Batch gradient descent: Instead of the whole training set,
compute the gradient only for a small subset of it.

e Crucial for scalable training on large data sets.



Forward and Backward Propagation

Forward Propagation:
Up = fo (Up-1W, +67)
£ —f (un,lwn v eT)

Backward Propagation:

.
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Forward and Backward Propagation
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Forward and Backward Propagation
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Forward and Backward Propagation

Ui = fi (XWT +6)
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Forward and Backward Propagation

Uy =fi (XWT+6,) Uy=fo (UWI+6,)
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Forward and Backward Propagation
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Forward and Backward Propagation

Uy = f> (U1 W3 +6,)
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Forward and Backward Propagation
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Forward and Backward Propagation
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Forward and Backward Propagation
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Forward and Backward Propagation
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Implementation



Design

e The backpropagation algorithm can be decomposed into
primitive operations on matrices:

e Matrix multiplication and addition
e Application of activation functions
e Computation of loss and regularization functionals and their
gradients
o General formulation of the backpropagation algorithm using
those primitive matrix operations

e Optimized matrix operations provided by specialized low-level
implementations



Design

TCuda TCpu TOpenCL

Low-level
Interface
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Design

TrainCPU(...)

TrainGPU(...)

TGradientDescent

IPPOIN OO

TCpu TOpenCL

TCuda

CRIIPER T

[9A3]-MO"]

13/ 38



Design

The Low-Level Interface:
e Implemented by architecture classes: TCuda, TCpu, TOpenCL

o Architecture classes provide matrix and scalar types as well
as host and device buffer types

The Object Oriented Model:

e Generic neural network implementation: Classes are templated
by architecture class.

e The TNet class provides a general implementation of the
backpropagation algorithm.

e The TDataLoader takes care of the streaming of data to the
device.



Dependencies

CPU Implementation:

e BLAS: quasi-standard, various optimized open source
implementations available, possibility to link against vendor
provided implementations when available

e TBB: To be replaced by Root’s ThreadPool class
CUDA Implementation:

e cuBLAS and cuRAND freely available as part of the CUDA
Toolkit

OpenCL Implementation:
e cIBLAS and cIRNG: Part of the cIMath libraries



Verification and Testing



Verification

e The code includes a reference implementation of the low-level
interface based on Root's TMatrix class.

e Generic unit test for all routines in the low-level interface
based on the reference implementation.

e Backpropagation algorithm verified using numerical
differentiation.

e Training routines verified by learning full-rank linear mappings.
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Performance Model

Consider a layer / with n; neurons, n;_1 input neurons and a batch
size of np,.

Forward Propagation:

e Multiplication of weight matrix W, with activations of
previous layer:

ninp(2n;—1 — 1) FLOP
e Addition of bias terms 0;:
nnp FLOP
e Application of activation function f; and its derivatives:

2nnpcs FLOP, c¢r=1



Performance Model

Consider a layer / with n; neurons, n;_1 input neurons and a batch
size of np,.

Backward Propagation
e Hadamard product:
nynp, FLOP
e Computation of previous layer activations:
ni_1np(2n — 1) FLOP
o Computation of weight and bias gradients:

ni—1n(2np — 1) + ny(np — 1) FLOP



Performance Model

Consider a layer / with n; neurons, n;_1 input neurons and a batch
size of np,.

Total:

Z6n/nbn/,1 + 4ninp — n/(n/,l + 1) — npnj_1
/

e Terms involving n;npn;_1 dominate complexity for the hidden
layers.



Benchmarks

e Training Data:
e Randomly generated data from a linear mapping R?° — R
e 10° input samples
o Network structure:
e 5 hidden layers with 256 neurons
e tanh activation functions
e Squared error loss
e Computation of the numerical throughput based on the time
elapsed for performing 10 training epochs.



CPU Performance

Implementation: Multithreaded OpenBLAS and TBB
Hardware: Intel Xeon E5-2650, 8 x 4 cores, 2 GHz, estimated
peak performance per core: 16 GFLOP/s
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GPU Performance (Single Precision)

Network: 20 input nodes, 5 hidden layers with nj, nodes each,
squared error loss

Hardware: NVIDIA Tesla K20, 3.57 TFLOP/s peak performance
(single precision)
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GPU Performance (Single Precision)
Optimization:
e Use compute streams to expose more parallelism to the device.

o Compute gradients for multiple batches in parallel.

e Using 2 streams:
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GPU Performance (Double Precision)

Network: 20 input nodes, 5 hidden layers with nj, nodes each,
squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double precision)
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GPU Performance
Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss

Hardware: NVIDIA Tesla K20, 1.17 TFLOP/s peak performance
(double)
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OpenCL Performance

Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss

Hardware: AMD FirePro W8100, 2.1 TFLOP/s peak performance
(double)
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Summary

Network: 20 input nodes, 5 hidden layers with 256 nodes each,
squared error loss
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Application to the Higgs Dataset



The Higgs Dataset

¢ Signal Process:
gg — H° - WEHT - WEWTH — WTWTbb
e Background Process:
gg — tt — WEWThb

e 21 low-level features: Momenta of one lepton and the four
jets, jet b-tagging information, missing transverse momentum

¢ 7 high-level features: Derived invariant masses of
intermediate decay products

e Dataset consisting of 11 million simulated collision events

!See http://arxiv.org/pdf/1402.4735v2. pdf


http://arxiv.org/pdf/1402.4735v2.pdf

Shallow vs. Deep Networks

¢ Shallow Network: 1 hidden layer with 256 neurons and tanh
activation function and cross entropy loss

e Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

e Both networks trained once using only low-level features and
once using both high-level and low-level features.



Shallow vs. Deep Networks

Background Rejection vs. Signal Efficiency
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Deep Networks vs. BDT

e Deep Network: 5 hidden layers with 256 neurons and tanh
activation function and cross entropy loss

¢ Boosted Decision Trees: 1000 Trees, maximum depth 3

e Both classifiers trained on low- and high-level features

Method | Training Time [h] | Area under ROC Curve
BDT 4.78 h 0.806
DNN 1.46 h 0.876




Deep Networks vs. BDT

Background Rejection vs. Signal Efficiency
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Summary and Future Outlook



Results

Testing and verification of the prototype implementation of
deep neural networks in TMVA.

Production-ready implementation of parallel training of deep
neural networks on CPUs and CUDA-capable GPUs.

Reproduced Higgs benchmark results.

Integrated CPU and CUDA implementations into Root master



Future Outlook

¢ Near Future:
e Finish OpenCL implementation

e Analyze performance on different architectures

e Extend neural network functionality: batch normalization,
activation functions, AdaGrad, ...
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