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Diquarks — where?

Diquarks in Matter 
□ Phases of QCD and diquarks 
□ Color superconductivity — theoretical illusion? 
□ Diquark condensate in nuclear matter 

Diquarks in Hadrons 
□ Diquark correlation in baryons 
□ Phenomenological mass formula and diquarks 
□ Implication from hadrons to matter
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Phases of QCD
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Chemical Potential  μNuclear Superfluid B

Fukushima-Hatsuda (2010)  /  Fukushima-Sasaki (2013)
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Phases of QCD
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Chemical Potential  μNuclear Superfluid B

Fukushima-Hatsuda (2010)  /  Fukushima-Sasaki (2013)

Complicated structures with  
various diquark condensates
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Diquark Condensation Phases
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Fukushima (2005)

Many diquarks  
— many phases 

Instabilities  
(Crystallized) 

All complications  
  by s-quarks

In b-equlibrium



October 24, 2016 @ Inha U

Caution!

6

Your phase diagram may not be the phase diagram  
for neutron stars or for heavy-ion collision (HIC)

Neutron Stars

HIC

Electric neutrality condition (n-rich; electron density) 
b-equilibrium (hyperons to lower the Fermi surface)

Electric charge conservation (Q/(p+n) fixed) 
Zero net strangeness (L, S compensated by K)
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Particle Abundances in HIC
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performed at nonzero temperature, and small values of µB without running
into problems of principle. At µB = 0, these simulations indicate that there
is no true phase transition from Hadronic Matter to a Quark-Gluon Plasma,
but rather a very rapid rise in the energy density at a temperature Tc which
lines in 160°190 MeV within the systematic errors. Further, studies using the
lattice technique imply that Tc decreases very little as µB increases, at least
for moderate values of µB.
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Fig. 3. Energy dependence of hadron yields relative to pions. The points are exper-
imental data from verious experiments. Lines are results of the Statistical Model
calculations. The figure is taken from [20,22]).

With the parametrizations of T and µB from Fig. 1 one can compute the
energy dependence of the production yields of various hadrons relative to
pions, shown in Fig. 3. Important for our purposes is the observation that there
are peaks in the abundances of strange to non-strange particles at center of
mass energies near 10 GeV. In particular, the K+/º+ and §/º ratios exhibit
rather pronounced maxima there. We further note that in the region near
10 GeV, there is also a minimum in the chemical freeze-out volume obtained
from the Statistical Model fit to particle yields [18], as well as in the volume
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Around HIC energies  
of J-PARC, NICA, 
FAIR,… the baryon  
density is maximized  
and so the strangeness  
pair production is also  
maximized (but the  
NET s is still zero)
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Classification of Diquarks

8

Color Triplet  
(antisymmetric)

Color Sextet  
(symmetric)

The phase diagram of dense QCD 24

whether the higher moments are in practice better measures for the QCD critical point
search.

From the above discussions one might have thought that the soft mode at the
critical point is the σ meson, but the fact is that the density fluctuation is rather to
be responsible for the critical property. To clarify this point it is useful to consider
the following Ginzburg-Landau expansion [162, 163];

F [σ,ϕ] = − ω2

Γ
σ2 − iω

λq2
ϕ2 + V [σ,ϕ] (50)

V [σ,ϕ] = aσ2 + bσ4 + cσ6 − hσ + γσ2ϕ+
1
2
ϕ2 − jϕ. (51)

Here ϕ represents one of conserved charge densities such as the baryon density nB

with an appropriate normalization. The equilibrium values of σ and ϕ are fixed by
∂V/∂σ = 0 and ∂V/∂ϕ = 0. The dynamics is solved by the kinetic equations of
motion ∂F/∂σ = 0 and ∂F/∂ϕ = 0, which leads to the eigen-frequencies [163],

χ−1
σ =

ω2
0

Γ
= χ−1

h + 4γ2σ2, χ−1
ϕ =

iωd

λq2
=

χ−1
h

χ−1
h + 4γ2σ2

, (52)

where ω0 and ωd are eigen-frequencies which are identified as the σ and density modes,
respectively. The notation χh represents the chiral susceptibility without the density
mixing taken into account, which diverges at the critical point. It is apparent from
the above expressions that the soft mode at the QCD critical point is the density
fluctuation and the σ-meson mode is a decoupled fast mode. This also explains in a
natural way why only the screening mass of the σ meson becomes vanishing at the
critical point, while the pole mass never does [159].

4. Formation of the diquark condensate

It is an interesting theoretical question to consider the ground state of quark matter at
T ≈ 0 with extremely large value of µq (here we entirely use µq instead of µB because
our central interest is quark degrees of freedom). Then, one may consider Cooper’s
stability test [68, 69]. Since QCD has an attractive interaction among quarks in the
perturbative regime, that is, the one-gluon exchange potential is proportional to two
quark SU(Nc) charges;

(ta)ij(ta)kl = −Nc + 1
4Nc

(
δijδkl − δilδkj

)
+

Nc − 1
4Nc

(
δijδkl + δilδkj

)
. (53)

The first term is anti-symmetric for the replacement between (i, k) or (j, l), which
represents the anti-triplet channel. This becomes clear if we use ϵaikϵajl = 2(δijδkl −
δilδkj). The latter term is symmetric representing the sextet channel. It is apparent
from (53) that the anti-triplet channel has an attractive interaction. It is known
that two particles sitting on a sharp Fermi sphere feeling an attractive interaction
between them have an instability towards formation of the Cooper pair condensation.
Therefore, at least at asymptotically high density, the existence of the superconducting
phase in which diquarks condensate, i.e. the colour-superconducting phase is inevitable
[68, 69, 164, 165, 166].

Because quarks carry not only spin but also colour and flavour, there are many
pairing patterns possible. Let us classify the members of the CSC phases here.
Hereafter we use the following notation; the (Greek) colour indices α, β, γ run from 1
to 3 meaning r (red), g (green) and b (blue) in order, and in the same way the (Roman)

Attractive Repulsive

Dominant Always mixed with triplet  
No new physics brought in  
Harmlessly neglected

Only this channel considered  
  (flavor) (spin) (orbital)  
   should be symmetric

Color Interaction
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Classification of Diquarks
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Spin-dependent Part Breit Interaction

H
color-spin

= ↵s

X

i 6=j

Mij(�i · �j)(si · sj)
color spin

> spin-singlet (antisymmetric) + flavor triplet (antisymmetric) 

    
> spin-triplet (symmetric) + flavor sextet (symmetric)

(si · sj)|0i = �(3/4)|0i

(si · sj)|1i = +(1/4)|1i

Good Diquark

Bad Diquark



October 24, 2016 @ Inha U

Remarks on “Bad Diquark”
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Bad diquarks play a role in hadron spectroscopy 
but their importance is minor in bulk properties

Spin-1 color-superconducting phase 
  spontaneously breaking rotational symmetry 
  (color-spin locked phase) 
  Gap is more than one order of magnitude smaller

If Fermi surfaces of different flavors are mismatched  
 (due to neutrality (neutron stars) or conservation (HIC))  
single-flavor diquarks may be favored (flavor-symmetric)
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Remarks on “Bad Diquark”
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N : S = 1/2 D : S = 3/2

d

u u
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confirmed in lattice QCD

no more s-s int. S · s = 1/2
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Color Superconductivity (CSC)
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Three triplet diquark condensates

hudi hdsi hsui
break which symmetry of QCD???

2-flavor case

hudi has electric charge and baryonic charge

Baryon-U(1) is NOT broken mixed with QED-U(1) 
QED-U(1) is NOT broken mixed with Color
5 out of 8 gluons are Meissner screened

No change in global symmetry
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Color Superconductivity (CSC)

13

Three triplet diquark condensates

hudi hdsi hsui
break which symmetry of QCD???

2-flavor case

hudi has electric charge and baryonic charge

No Meissner Effect even if  
 an external B is imposed
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Color Superconductivity (CSC)
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Three triplet diquark condensates

hudi hdsi hsui
break which symmetry of QCD???

3-flavor case

hudi have electric charge and baryonic charge

Baryon-U(1) is broken  
QED-U(1) is NOT broken mixed with Color
8 gluons are all Meissner screened

Chiral symmetry broken and superfluid

hdsihsui
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CSC : Illusion? Reality?
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No phase transition between Higgs and confining phases
CSC Hadronic

Chemical Potential  μNuclear Superfluid BThe phase diagram of dense QCD 32

quark-hadron continuity

s = 0
D ~ 0

s ~ 0
D = 0

s > D = 0\
\

\~ D > s = 0\~

U(1)A BrokenU(1)A Symmetric

induced by D s2

mq

Figure 9. Schematic figure of the realization of the quark-hadron continuity
by the presence of the σ∆2 interaction term which induces σ ̸= 0 driven by
substantially large ∆ near the first-order phase boundary.

An interesting question is, if the Quark-Hadron continuity is the case, how
collective excitations in respective phases can be smoothly connected to each other.
The nature of the Nambu-Goldstone bosons, i.e. the (CFL) pions and kaons should
reflect the ground state properties. Using the chiral effective Lagrangian approach
[187] their energy dispersions are, in the presence of ms ̸= 0 and µe ̸= 0, read as
[188, 189]

ϵπ±(p) = ±µe +
√

v2p2 + M2
π± ,

ϵK±(p) = ±µe ∓
m2

s

2µq
+

√
v2p2 + M2

K± ,

ϵK0(p) = − m2
s

2µq
+

√
v2p2 + M2

K0 , (79)

where v2 = 1/3 at high density. The CFL meson masses are given by

M2
π± = a(mu + md)ms + χ(mu + md),

M2
K± = a(mu + ms)md + χ(mu + ms),

M2
K0 = a(md + ms)mu + χ(md + ms). (80)

Here a = 3∆2/(π2f2
π) with f2

π = (21 − 8 ln 2)µ2
q/(36π2) at high density and χ

parametrizes the contribution of U(1)A-breaking instanton effects which generate ⟨ψ̄ψ⟩
and therefore contribute to the CFL meson masses.

In the absence of the instanton term (χ = 0), if ms ! m1/3∆2/3 where m is either
mu or md, the energies for K+ and K0 become negative. The electron contribution to
the thermodynamic potential favours the K0 condensation. This opens a new phase
region on the dense-QCD phase diagram in which the superfluidity of K0 meson
is realized. Such a CFL state with K0 condensation is called the CFL-K0 phase
[190, 191, 192, 193]. The phase structure with inclusion of the CFL-K0 phase and its
variants is also investigated in the NJL-type model [194, 195]. The onset of the K0

condensation depends on the instanton χ strength.
In view of (80) the meson mass ordering is Mπ± > MK± ≃ MK0 for ms ≫ mu ≈

md and χ ≈ 0, which is inverse of the ordinary ordering [188]. This is, however,
natural from the diquark picture as already implied by the order parameter (15) in
which CFL-σ meson consists of two diquarks, i.e. q̄q̄qq. The Nambu-Goldstone bosons
are accordingly composed from q̄q̄qq; CFL-π+ contains a d̄s̄ diquark that transforms
like u quarks and an su diquark like d̄ quarks, while CFL-K+ a d̄s̄ diquark and a
ud diquark like s̄ quarks. Therefore CFL-K+ has a d quark instead of an s quark as

3-flavor symmetric NM  
 is always mixed with CSC  
Diquark IS there!

July 8 @ RCNP 35

Instanton-induced Diquarks

Mixing between quark-antiquark and diquark-
antidiquark can be taken into account quantitatively 
through the instanton-induced interaction

Mixing Decay

't Hooft-Isidori-Maiani-Polosa-Riquer (2008)

Necessary couplings of the instanton-induced interaction
are consistent with each other  →  A consistent picture

’t Hooft et al. (2008)
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CSC : Illusion? Reality?
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No phase transition between Higgs and confining phases
CSC Hadronic

Chemical Potential  μNuclear Superfluid B

2-flavor NM can be also  
 mixed with CSC with           
Diquark could be there!

hq̄qi

2-flavor CSC does NOT break any global symmetry 
but it can co-exist with chiral condensate as in NM

NM EoS could be described by QM EoS with diquarks
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Quarkyonic Star
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Quark model (NJL) constrained to reproduce NM EoS
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Fig. 1.— Vector coupling in the 2SC phase fitted
with APR for H = 1.5Gs (lower solid curve) and
H = 1.6Gs (upper solid curve). The interpolat-
ing fit results to the CFL phase with d = 0.4 are
represented by the dotted curves.
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Fig. 2.— Constituent quark masses and the di-
quark gap ∆ud in the 2SC phase as functions of
µB in the case of H = 1.5Gv (corresponding to the
solution shown by a lower solid curve in Fig. 1).
The chiral phase transition is a smooth crossover
because of the vector coupling.

(upper solid curve) in Fig. 1. We emphasize that
we did not assume any functional form a priori
and Gv(µB) shown in Fig. 1 results solely from the
fit to APR once we make a choice of the diquark
coupling H. We vary H to check the sensitiv-
ity and will see that this choice is near the upper
limit not to violate the causality. It is important
to note that the chiral phase transition is a very
smooth crossover in the presence of large Gv, so
that this 2SC phase can accommodate both di-
quark and chiral condensates for any µB. This is
clear in Fig. 2 where the constituent quark masses,
Mu, Md, Ms, and the gap energy ∆ud are given
as functions of µB. There is a small discrepancy
between Mu and Md because of the electric charge
neutrality condition that breaks isospin symmetry.

Interestingly, we have found that the best fit
form of Gv(µB) is an inverse logarithm for both
H = 1.5Gs and H = 1.6Gs. Such an inverse loga-
rithmic is quite suggestive because it is consistent
with the common form of the running coupling
constant at one-loop level. However, the valid-
ity of this fitting should be lost at some point of
the baryon density. In fact, at sufficiently high
baryon density the ground state should be the
CFL phase. Moreover, the vector coupling Gv

should be ∼ 0.5Gs or greater to support the mas-
sive neutron star with M ! 2M⊙. To satisfy the
boundary conditions, i.e., the smooth connection
to APR in the lower-density side and to the CFL
phase with Gv ! 0.5Gs in the higher-density side,
we must modify Gv(µB) from an inverse logarithm
to the following form:

Gv(µB)/Gs =
a

log[(µB − b)/c]
+ d (4)

with an offset by d. Once we fix d, we can de-
termine other three parameters, a, b, c using the
smooth connection to APR. We changed d to find
that the massive neutron star with M > 2M⊙ is
impossible with d " 0.3. We shall therefore choose
d = 0.4 throughout this work. The parameters
fixed in such a way, for H = 1.5Gs and 1.6Gs

respectively, are listed in Tab. 1 and the corre-
sponding Gv(µB) that interpolates between APR
and the CFL phase is overlaid by dashed curves
in Fig. 1. We note that, for the parameter de-
termination, we took the fitting range from µq =
(340 ∼ 345) MeV (i.e., µB = (1.02 ∼ 1.035) GeV).

With this running-Gv we can find the CFL so-

7

lution as well as the 2SC phase and then we can
locate a first-order phase transition between them
by comparing the pressure. In Fig. 3 we show an
example for H = 1.5Gv to find a first-order phase
transition at µB = 1.31 GeV where the pressure
of the interpolating 2SC phase with running Gv

and the CFL phase crosses. We make a remark on
the connection between APR and the 2SC phase
around µB ∼ 1 GeV. From Fig. 3 one might think
that APR has a slightly larger pressure above the
fitting region, and so APR would be rather fa-
vored. To resolve such confusion we here again
emphasize our picture of the quarkyonic scenario.
The change from NM to QM is not any phase tran-
sition but what we assume is a dual regime around
µB ∼ 1 GeV in which NM is gradually taken over
by QM. In contrast to this smooth crossover from
NM to QM, the change from the 2SC phase to
the CFL phase is a genuine physical phase tran-
sition with different symmetry-breaking patterns.
In many model studies including the present work,
this phase transition turns out to be of first order.

Now that we have the EoS for the whole range
of µB from NM to CSC, we can compute not only
the pressure P but the energy ε = µBnB − P as
well. Actually, the relation of P vs ε is essential for
the estimation of the neutron star mass. Because
ε involves a first derivative in nB, its value jumps
discontinuously at the first-order phase transition.
We can see this behavior in our numerical results
shown in Fig. 4. It is also clear in Fig. 4 that the
2SC part hardly changes with different choices of
H. We can explain this minor dependence from
the fact that we impose the same boundary condi-
tion of APR at lower density. The other boundary
condition of the CFL phase side is, on the other
hand, loosely constrained by the massive neutron
star, and so there remains H dependence in the
CFL part as is the case in Fig. 4. This fact im-
plies that, if we knew the EoS in the limit of the
high baryon density from, e.g. pQCD calculations,
a combination of H and Gv could be better con-
strained.

H/Gs d a b [GeV] c [GeV]
1.5 0.4 0.05283 0.4049 0.5735
1.6 0.4 0.1127 0.2942 0.6804

Table 1: Parameters for the interpolating Gv(µB)
between APR and the CFL phase.
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8

No sharp chiral phase transition 
1st-order transition between 2- and 3-flavor CSCs

Fukushima-Kojo (2015)
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Diquarks in NM
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Can we “exclude” the presence of diquarks in NM?

Suppose hudi 6= 0

Physical observables must be gauge invariant

h(ūd̄)(ud)i ⇠ h(ūu)(d̄d)i 6= 0

hppi hpni hnni huui hudi hddi
Fermi surface  
  mismatched 
(N=Z nuclei?)

Antisymmetric color  
  makes a difference

Relation?
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Summary (for Matter)
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Nothing has excluded a mixture of diquark condensate 
in nuclear matter (even at normal nuclear density!)

Theoretical subtlety comes from “gauge invariance” 
What observable can tell us anything about diquarks?

Ordinary Nuclear 
Matter without CSC

Exotic Nuclear 
Matter with CSC

If anything could be experimentally measurable,  
how can we “clearly” distinguish one from the other?

Some hints may come from diquarks in exotic hadrons
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Diquarks in Baryons
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Diquark correlations measured in lattice-QCD

3

at κ = 0.153, 0.154 and 0.155 respectively. Therefore our
estimate of ∆m is consistent with the predicted 2/3 of
the ∆-nucleon mass difference given in Ref. [8].

FIG. 2: Mass difference between “good” and “bad” diquarks
as a function of m4

π at β = 5.8 (crosses), β = 6.0 (open
triangles), β = 6.2 (filled circles) and unquenched result (filled
square). The dashed lines are fits to Eq. (4).

FIG. 3: CΓ(r/a = 7.35, θ) versus cos(θ) for β = 6.2 and
κ = 0.1520 for the “good” diquark ( asterisks) and the other
diquark channels using the same notation is as in Fig. 1. Cor-
relators for the “bad” diquark have been multiplied by two
and for all negative parity channels by ten.

Having determined the diquark spectrum, we now turn
to the analysis of their structure by studying the density-
density correlators defined in Eq. (1). The time t where
the density operators are inserted is shown in Fig. 1 by
the arrow (at t/a = 8), and is within the plateau range
of the effective mass. We have verified that the correla-
tors remain, within errors, unchanged when we vary the
source-sink separation or equivalently t. Our aim is to
look for spatial correlations between the two light quarks
in the various diquark channels. We take the location of
the static quark as the reference coordinate from which
the distances ru and rd of the two quarks of different fla-
vors are measured. We are interested in intrinsic diquark
correlations, which persist as the static quark is moved
away from the diquark. We therefore consider spherical

FIG. 4: Left: CΓ(r/a = 5.1, θ)/Cγ5
(r/a = 5.1, 0) versus

cos(θ). Right: CΓ(r = 0.5 fm, rud)/Cγ5
(r = 0.5 fm, 0) ver-

sus rud, for the “good” (asterisks) and “bad” (filled triangles)
diquarks at the lightest pion for our three lattice spacings.

shells |ru| = |rd| = r of increasing radius r. Since the
system is spherically symmetric the correlator depends
only on r and the angle θ = arccos(r̂u.r̂d) [6]. In the ab-
sence of any correlation, the distribution of CΓ(r, θ) will
be uniform as a function of cos(θ). Attraction will show
up as an enhancement at small angles, near cos(θ) = 1.
Our cubic lattice breaks rotational symmetry and dis-
torts the uniform spherical distribution, particularly at
small angle θ. To remove such lattice artifacts, we nor-
malize our distributions by a uniform lattice distribution.
We show the resulting density correlators in Figs. 3 and
4 for various shell radii r. The physically relevant corre-
lations are those that survive when r is large. We indeed
observe that the qualitative behavior of the distributions
does not depend on r, confirming that the color field gen-
erated by the static quark does not affect the physics of
diquarks once r is large enough.

In Fig. 3 we show CΓ(r, θ) for all the different channels
as a function of cos(θ) when the shell radius is fixed to
r = 0.5 fm (r/a = 7.35). We clearly observe that the
“good” diquark shows enhanced correlations at small θ,
indicating attraction between the quarks. There is also
a gradual increase in the distribution for the “bad” di-
quark indicating a weaker attraction in this channel. This
behavior persists as we increase or decrease the quark
masses. For the negative parity channels, correlations are
absent or very weak, except for the vector channel with
Γ = γ5γi. However those disappear for lighter quark

Quarks are heavier than physical  
Volume is as small as proton size 
  Density-correlation must be 
  re-analyzed with better data

An interesting observation is:

4

masses. The negative-parity correlators are noisier be-
cause the diquarks are heavier, so that a higher statistics
analysis will be needed to fully determine the charac-
teristics of their distributions. For this reason, we now
restrict our analysis to the positive parity diquarks.

δL = (2/
√

3 − 1/2
√

3)ϵ
=
√

3ϵ/2

ϵ/2increases by ϵ/
√

3

decreases by ϵ/2
√

3
ϵ/2

FIG. 5: String formation for three quarks, where one quark
has been taken to the distant left. As a function of the sepa-
ration between the other two quarks, the static potential rises
with an effective string tension σeff = σ

√
3

2
.

In Fig. 4 we show the density correlators for the “good”
(scalar) and “bad” (vector) diquarks for all three lattice
spacings at our lightest quark mass. The left hand set
shows the correlator as a function of cos(θ) normalized to
1 at θ = 0 for r/a = 5.1, which corresponds to r = 0.69,
0.47 and 0.35 fm at β = 5.8, 6.0 and 6.2 respectively.
As can be seen, irrespectively of the distance the “good”
diquark shows stronger spatial correlations. Within this
framework we can also extract the diquark size: At fixed
r we look at the dependence of the correlator on the rel-
ative u − d separation, rud = 2r sin (θ/2). In the right
hand of Fig. 4, we show the correlator (normalized to 1 at
the origin) as a function of rud for a fixed physical shell
radius r = 0.5 fm, at our lightest quark mass. An ex-
ponential dependence of Cγ5

(r, rud) ∝ exp(−rud/r0(r))
provides a gauge invariant definition of the diquark size
r0(r) for a given value of r. The curves in Fig. 4, ob-
tained from fits to an exponential dependence, describe
well Cγ5

(r, rud) at all β values. Moreover the physical
size r0(r) is the same on the two finer lattices, confirm-
ing continuum-like behaviour as for the diquark masses.
We can then evaluate r0 as a function of the shell ra-
dius r. Our measurements show a mild increase of r0

with r, from ∼ 0.9 fm to ∼ 1.3 fm as r increases from

0.3 to 0.75 fm. For large r ! 0.5 fm, r0 is consistent
with having reached a plateau. This suggests that the
static source has a small influence on the “good” diquark
giving a characteristic size of about 1.1 ± 0.2 fm. For
comparison, at the same quark mass and using the same
definition of size, we find for the ρ a size of 0.7 fm [9]. The
large diquark size can be understood from the following
qualitative argument: As the static quark is moved away
from the diquark a q-q string tension develops. Consid-
ering an increase ϵ in the separation between the quarks
in the diquark as illustrated in Fig. 5 one finds that the
effective q-q string tension is

(√
3/2

)

σ where σ is the q-q̄
string tension. Since in the perturbative regime, the q-q
attraction is also weaker than the q-q̄ attraction, this time
by a factor 1/2, the conclusion is that for all distances
one expects the q-q attraction to be weaker. Thus a q-
q diquark should be somewhat larger than a q-q̄ meson,
which is what we find. Size measurements for the “bad”
diquark, on the other hand, show neither scaling nor con-
vergence to a plateau value. The large values obtained,
often similar to our box size, corroborate the weakness
of spatial correlations in this channel.

In conclusion, we have evaluated the mass splittings
and density correlators of the complete set of diquark
channels created by local diquark fields. Both observ-
ables confirm the phenomenological expectation that
QCD dynamics favors the formation of “good” diquarks,
i.e. in the scalar positive parity channel. The character-
istic size of this diquark, O(1) fm, is large but consistent
with the scale O(200) MeV of the attraction. Even a
“good” diquark is a large object, which may limit its rel-
evance to hadron structure. The positive parity vector
channel is higher in energy by about 2/3 the ∆-nucleon
mass splitting, and forms an even larger object. All the
negative parity channels have much higher energies.
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dius r. Our measurements show a mild increase of r0
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attraction is also weaker than the q-q̄ attraction, this time
by a factor 1/2, the conclusion is that for all distances
one expects the q-q attraction to be weaker. Thus a q-
q diquark should be somewhat larger than a q-q̄ meson,
which is what we find. Size measurements for the “bad”
diquark, on the other hand, show neither scaling nor con-
vergence to a plateau value. The large values obtained,
often similar to our box size, corroborate the weakness
of spatial correlations in this channel.

In conclusion, we have evaluated the mass splittings
and density correlators of the complete set of diquark
channels created by local diquark fields. Both observ-
ables confirm the phenomenological expectation that
QCD dynamics favors the formation of “good” diquarks,
i.e. in the scalar positive parity channel. The character-
istic size of this diquark, O(1) fm, is large but consistent
with the scale O(200) MeV of the attraction. Even a
“good” diquark is a large object, which may limit its rel-
evance to hadron structure. The positive parity vector
channel is higher in energy by about 2/3 the ∆-nucleon
mass splitting, and forms an even larger object. All the
negative parity channels have much higher energies.
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String tension is “screened” by q (?) 
qq int is “strengthened” by Y junction

Diquark in a baryon can be bound  
as tightly as        in mesonsq̄q

This already indicates that in-medium diquarks can be 
   very different from isolated diquarks (no “diquark gas”)

Force to split a diquark up is (only) 15% smaller than  
  that to separate a diquark and a quark apart. 
In lattice QCD it should be possible to extract also the  
  spin-dependent part (projected into S=0 channel).
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M =
X

i

mi + C 0| (0)|2
X

i 6=j

�i · �j
si · sj
mimj

⇠
X

i

mi + C
X

i 6=j

si · sj
mimj

Cq̄q > Cqq

CM CB

Lee-Yasui 
Lee-Yasui-Liu-Ko (2007)

Hadron masses and stability can be easily studied 
once the wave-function is assumed (diquark model)
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L : S = 1/2 S : S = 1/2

d

u s

u

u s

S = 0 S = 1no more s-s int.

H
color-spin

= �3

4

CB

m2

u

H
color-spin

= +
1

4

CB

m2

u

S · s = �1

Different 
  from D

M⌃ �M⇤ = CB

⇣ 1

m2
u

� 1

mums

⌘

! m
bad

�m
good

(ms ! 1)
(~ 200MeV)

Favors diquark
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d

u q

D

q

MN = mD +mu (mD = 2mu � (3CB/4m
2
u))

M� = mD0 +mu +
1

2

CDq

mD0mu
(m0

D = 2mu + CB/(4m
2
u), CDq ' 2CB)

etc etc…implying to matter properties:
µB(threshold for N) = MN (��B)

µB(threshold for D) =

3

2

mD = MN � 3

8

CB

m2
u

< MN (surprise!)

Support for the presence of CSC in normal NM!
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Lattice QCD needs updates with lighter quark mass 
and larger volume 
 — Electric charge distribution function (charge radius) 
 — Density-density correlation 
 — qq string tension is well-defined only with another q

Establishment of “constituent diquark model” may have 
a big impact to the high-density phases of QCD 
 — Residual (spin-indep.) interaction of diquarks and quarks 
 — Diquark properties with more surrounding quarks

q (baryon) , q̄q̄ (tetraquark) , Dq̄ (pentaquark) , . . . ,! (matter)


