

Experimental study of high density QCD at J-PARC-HI

Takao Sakaguchi
Brookhaven National Laboratory
for the J-PARC HI Collaboration

2016 JAEA/ASRC Reimei Workshop : New exotic hadron matter at J-PARC

J-PARC-HI Collaboration (Sep. 2016)

87 collaborators

Experiment

- S. Nagamiya (JAEA/KEK/RIKEN)
- H. Sako, K. Imai, K. Nishio, S. Sato, S. Hasegawa, K. Tanida, H. Sugimura, Y. Ichikawa (ASRC/JAEA)
- K. H. Tanaka, S. Sawada, K. Ozawa (J-PARC/KEK)
- T. Sakaguchi, G. David, M. Chiu (BNL)
- K. Shigaki (Hiroshima Univ.)
- A. Sakaguchi (Osaka Univ.)
- T. Chujo, S. Esumi, B. C. Kim, O. Busch, T. Nonaka,
- H. Masui, Y. Miake (Univ. of Tsukuba)
- M. Inaba (Tsukuba Univ. of Technology)
- K. Oyama, H. Hamagaki, Y. Tanaka (Nagasaki IAS)
- T. Gunji (CNS, Univ. of Tokyo)
- H. Tamura, M. Kaneta (Tohoku Univ.)
- M. Naruki (Kyoto Univ.)
- S. Yokkaichi, T. Hachiya (RIKEN)
- T. Saito (Mainz Univ/GSI)
- M. Shimomura (Nara Women's Univ)
- T. Nakamura (KEK)
- S. H. Hwang (KRISS)
- B. Hong, J. K. Ahn (Korea Univ)
- E. J. Kim (Chonbuk National Univ)
- I. K. Yoo (Pusan National Univ)
- J. Milosevic, M. Djordjevic, L. Nadjdjerdj, D. Devetak, M. Stojanovic, P. Cirkovic (Belgrade Univ)
- T. Csorgo (Wigner RCP/KRF)

- P. Garg (Stonybrook Univ.)
- D. Mishra (Bhaba Atomic Research Centre)
- S. Shimansky (JINR)
- N. Xu, X. Luo (CCNU)

Accelerator

- H. Harada, P. K. Saha, M. Kinsho, J. Tamura, Y. Shomuda, H. Hocchi, M. Yamamoto, F. Tamura, J. Kamiya, M. Yoshimoto, A. Okabe, N. Tani, Y.
- Watanabe, S. Kato, Y. Liu (J-PARC/JAEA)
- M. Okamura (BNL)
- A. Kovalenko (NICA/JINR)

Theory

- M. Kitazawa, M. Asakawa (Osaka Univ.)
- T. Maruyama, M. Oka (JAEA)
- T. Hatsuda (RIKEN)
- K. Itakura (J-PARC/KEK)
- A. Ohnishi, K. Morita (YITP)
- T. Hirano (Sophia Univ)
- K. Fukushima, H. Fujii, K. Murase (Univ. of Tokyo)
- Y. Nara (Akita International Univ.)
- M. Harada, C. Nonaka (Nagoya Univ.)
- J. Nakamura (Far Eastern Federal Univ.)

Charm of high density QCD

- High density?: ~3-4 times normal nuclear density = ~0.5GeV/fm³
 - Normal nuclear density: 0.17 GeV/fm³
 - Quarks and gluons can be liberated (Quark Gluon Plasma: QGP)
- Connection to astronomy
 - Neutron star core: ~0.5GeV/fm³
 - Ground lab for neutron star
- New field in high density
 - Color superconductivity, etc.
- Connection to condensed matter physics
 - Onto BCS-BES cross-over
 - Common properties of multi-body systems: Electro-magnetic and strong interaction

HI Accelerator scheme in J-PARC

This HI accelerator scheme has no interference/conflict with proton beam programs

Available beam and rate

- Very high intensity beam is a feature of J-PARC HI accelerator
 - E_{lab} =1-19GeV/n, $\sqrt{s_{NN}}$ =1.9-6.2GeV (~ AGS), >10¹¹ cycle⁻¹(~6s cycle)
- Ion species: p, Si, Ar, Cu, Xe, Au(Pb), U, and also light ions for hypernuclei

Review of previous results

- Net proton = N(p) N(pbar)
 - A good variable showing the position of incident and target nucleons
- Nucleon centered around mid-rapidity at AGS energy
 - Nucleons stop at mid-rapidity: Baryon stopping → High density matter
 - Incident and target nucleons pass through each other at SPS and RHIC

Rapidity

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}$$

z: Beam direction

Collisions at J-PARC energy

2016-10-24

Low energy (Landau picture)

Cartoon by the courtesy of K. Itakura

$$\rho = 2A/(V/\gamma_{\rm CM}) = 2\gamma_{\rm CM}\rho_0$$

$$\gamma_{\rm CM} = 2.87$$

Review of previous results

- Compilation of various particle ratios as a function of energy
- Hadrons including strangeness:
 K⁺, K⁻, Λ, Ξ, Ω
- π is a measure of the total number of particles produced in an event
- K⁺, K⁻, Λ, Ξ, have maximum yields around √s_{NN}=5GeV
 - K⁻ is hard to produce since ubar is not copious in the beginning
 - Production cross-section of $\boldsymbol{\Omega}$ is very small
- Strangeness is most produced at AGS (J-PARC) energy

NPA772(2006)167

Strange-rich matter at J-PARC

- High T, low μ_b (RHIC, LHC) \rightarrow High T, high μ_b (AGS, J-PARC-HI) \rightarrow Low T, high μ_b (neutron star)
- Approaching to the core of the of neutron stars
 - HI reaction produces Strangeness by Strong Interaction
 - Neutron-star core produces Strangeness by Weak interaction

Concept of measurement device

- Detector complex covering wide acceptance
 - High speed tracking, TOF, EM calorimeter, and muon detector
- 0.1% λ_1 target: ~100MHz event rate, 1000 particles/event
- Collect data with minimum bias trigger (Data size: 1TB/s)
 - Continuously take data with no trigger (Import ALICE experience)
 - Select rare events in semi-online, using a high performance computing system

Particle production rates

Beam: 10¹⁰ Hz

0.1% target

→ Interaction rate 10⁷ Hz

Centrality trigger 1%

→ DAQ rate = 100kHz

In 1 month experiment:

 $\rho,\omega,\phi\rightarrow$ ee 10⁷-10⁹

D,J/Ψ 10⁵-10⁶ (20AGeV)

(10³ -10⁴(10AGeV))

Hypernuclei 10⁵ -10¹⁰

Ref: HSD calculations in FAIR Baseline Technical Report (Mar 2006)
A. Andronic, PLB697 (2011) 203

Event selection consideration

- Centrality: Event class variable proportional to impact parameters
 - 0%: b=0, Central collisions
 - 100%: b=bmax, Peripheral collisions
- Same event selection as we did in the past wouldn't yield new physics
- We add a new event selection
 - After pre-selecting most central collisions
- Strangity, Baryonity
 - Aggressively select interesting events relevant to the new phenomena found by the AGS experiment
 - Strangeness enhancement, baryon stopping
- Statistics-starved "very rare event" selection feasible with high luminosity beam at J-PARC-HI

TS, H. Sako and M. Kitazawa, in prep.

2016-10-24

$$Strangity = \left\langle N(K^+) \right\rangle / \left\langle N_{ch} \right\rangle$$

$$Baryonity \equiv \langle N(p) - N(\overline{p}) \rangle$$

Physics Observable

Physics observables at RHIC

Physics observables at J-PARC-HI

- Primarily focus on new observables found at higher energy experiments
 - Based on knowledge gained at RHIC and LHC
- Study characteristics of high density matter
 - Particle emission anisotropy, fluctuation of conserved quantities
 - Lepton pairs, thermal photons

Thermal photons

- Emitted from all the stages after collisions
- Penetrate the system unscathed after emission
 - Carry out thermodynamical information such as temperature
- Photons will be produced by Compton scattering or qqbar annihilation at LO

$$E\frac{dR_{\gamma}}{d^{3}p} = -\frac{\alpha_{em}}{\pi^{2}} \operatorname{Im}\Pi_{em}(\omega, k) \frac{1}{e^{E/T} - 1}$$

Π_{em} : photon self energy

$$\operatorname{Im}\Pi_{em}(\omega,k) \approx \ln\left(\frac{\omega T}{\left(m_{th}(\approx gT)\right)^2}\right)$$

- Product of Bose distribution and transition probability
- Slope at E>>T tells temperature (T~200MeV)

q

Virtual photon measurement at J-PARC

- Produced in the same process as real photons, but with a virtual mass (Q²)
- At RHIC, virtual photons are measured via electron-decay channel
 - PRL 104, 132301(2010)
- At J-PARC, photons will be measured via muon-decay channel
 - γ -> $\mu^+\mu^-$: No background muons from π^0 or η . S/N is better

a

Low-mass dileptons

- From STAR's BES result
 - Low mass enhancement is well-described by cocktail + in-medium ρ modification (Rapp model) + thermal radiation
- How does it look like in even lower energy, i.e., in dense matter?
 - At J-PARC, measurement of both di-electrons and di-muons is planned

F. Geurts, Thermal photon dilepton workshop, Aug, 2014 and NPA 904-905 (2013) 217c

Dileptons at RHIC and LHC energy

Dileptons at J-PARC energy

- Landscape for J-PARC (√s~5GeV)
- Intermediate Mass Range
 - DDbar is very hard
 - Sensitive to QGP thermal radiation?
- Low Mass Range
 - in-medium modification of vector mesons (link to chiral symmetry restoration)
 - Thermal radiation

2016-10-24

Dimuons at J-PARC energy

- There is no muon decay for π^0 and η
 - S/B is much better

Particle flow

- In non-central collisions, the collision area is not isotropic
 - Different pressure gradient produces momentum anisotropy of emitted particles

$$\frac{dN}{d(\phi - \Psi_n)} = N_0[1 + 2\sum_{n=1}^{\infty} v_n \cos\{n(\phi - \Phi_n)\}]$$

$$\nu_n = \langle \cos\{n(\phi - \Phi_n)\}\rangle$$

Fluctuation of nucleon position yields higher order anisotropy

$$(v_3, v_4, ... v_n)$$

Sensitive to EOS, shear viscosity (η) to Entropy density (s) ratio (η /s)

$V_1, V_2, V_3, V_4....$

- v₁: Slope of directed flow (dv₁/dy) for protons will change its sign from positive to negative around mid-rapidity, if a phase transition occurs
- v₂: Flow of protons and anti-protons merges at higher energies.
 - Low p_T, the pressure from the partonic phase is not well developed
- v₃, v₄: mainly from fluctuations. Will be increased in partonic phase

PHYSICAL REVIEW C 93, 014907 (2016)

$V_1, V_2, V_3, V_4....$

- v₁: Slope of directed flow (dv₁/dy) for protons will change its sign from positive to negative around mid-rapidity, if a phase transition occurs
- v₂: Flow of protons and anti-protons merges at higher energies.
 - Low p_T, the pressure from the partonic phase is not well developed
- v₃, v₄: mainly from fluctuations. Will be increased in partonic phase

PHYSICAL REVIEW C 93, 014907 (2016)

Fluctuation of quantities

- Energy fluctuation → Specific heat
- Multiplicity fluctuation → Compressibility
- Net-baryon fluctuation → Correlation length (an index for phase transition)

Variance: $\sigma^2 = \langle (\Delta \mathcal{N})^2 \rangle \sim \xi^2$ [$\chi^{(2)}/\chi^{(1)}$] Skewness: $S\sigma = \langle (\Delta \mathcal{N})^3 \rangle / \sigma^2 \sim \xi^{5.5}$ [$\chi^{(3)}/\chi^{(2)}$] Kurtosis: $K\sigma^2 = \langle (\Delta \mathcal{N})^4 \rangle / \sigma^2 - 3\sigma^2 \sim \xi^9$ [$\chi^{(4)}/\chi^{(2)}$]

Skewness

Kurtosis

Net-proton fluctuation

- Net-protons scanned over wide cms energy by STAR experiment at RHIC
 - Variance follows Poisson
 - Skewness doesn't
 - But it is expected from UrQMD
 - Kurtosis does follow Poisson, except for 0-10% centrality
 - Out of UrQMD expectation
 - Critical point?
- UrQMD has no Critical Point
- Need confirmation at J-PARC
 - Statistic-starved measurement
 - A strong tool to point critical point

Variance: $\sigma^2 = \langle (\Delta \mathcal{N})^2 \rangle \sim \xi^2$ [$\chi^{(2)}/\chi^{(1)}$] Skewness: $S\sigma = \langle (\Delta \mathcal{N})^3 \rangle / \sigma^2 \sim \xi^{5.5}$ [$\chi^{(3)}/\chi^{(2)}$] Kurtosis: $K\sigma^2 = \langle (\Delta \mathcal{N})^4 \rangle / \sigma^2 - 3\sigma^2 \sim \xi^9$ [$\chi^{(4)}/\chi^{(2)}$]

One comment on chiral symmetry

- q-qbar condensate changes more rapidly in baryon density axis.
- Studying chiral symmetry restoration is essential in understanding the property of the QCD vacuum.

- Recent PHSD calculation with χ-sym. restoration reproduces K/ π "horn"
 - Cassing, Palmese, Moreau, Bratkovskaya, PRC93, 014902 (2016)
- This is an interesting topic to be pursued at J-PARC-HI

Summary

- Density at J-PARC-HI can reach as ~8 times high as normal nuclear density
 - Approach to the core of neutron star
 - Approach to color superconductivity
 - Exploring BEC-BCS crossover, common feature between condensed and nuclear matter
- Focus on "very rare events" using high beam luminosity
 - 10~100MHz event rate
 - Triggerless data acquisition (importing ALICE experience)
 - Select rare events in semi-online using high performance computing system
- Introducing a new aspect on measurement
 - Introducing a new event selection based on the knowledge gained at AGS
 - Strangity, baryonity
- Measurement of new observables found by RHIC and LHC experiments
 - Particle emission anisotropy, fluctuation of conserved quantities
 - Lepton pairs, thermal photons