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l  High density?: ~3-4 times normal nuclear density = ~0.5GeV/fm3 

–  Normal nuclear density: 0.17 GeV/fm3 
–  Quarks and gluons can be liberated (Quark Gluon Plasma: QGP) 

l  Connection to astronomy 
–  Neutron star core: ~0.5GeV/fm3 
–  Ground lab for neutron star 

l  New field in high density 
–  Color superconductivity, etc. 

l  Connection to condensed 
     matter physics 

–  Onto BCS-BES cross-over 
–  Common properties of 
     multi-body systems: 
    Electro-magnetic and 
    strong interaction 
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Charm of high density QCD 
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Transmutation Experimental 
Facility (TEF) 

HI	Linac	

HI	booster	



HI Accelerator scheme in J-PARC 
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Figures:	Not	to	scale	
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This	HI	accelerator	scheme	has	no	interference/conflict	with	proton	beam	programs 
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Available beam and rate 
l  Very high intensity beam is a feature of J-PARC HI accelerator 

–  Elab=1-19GeV/n, √sNN=1.9-6.2GeV (~ AGS), >1011 cycle-1(~6s cycle)  
l  Ion species: p, Si, Ar, Cu, Xe, Au(Pb), U, and also light ions for hypernuclei 

AGS	

SPS	



l  Net proton = N(p) – N(pbar) 
–  A good variable showing the position of incident and target nucleons 

l  Nucleon centered around mid-rapidity at AGS energy 
–  Nucleons stop at mid-rapidity: Baryon stopping à High density matter 
–  Incident and target nucleons pass through each other at SPS and RHIC 
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Review of previous results 
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U+U: ~8.6ρ0	

z: Beam direction 



Collisions at J-PARC energy	

Low energy  （Landau picture）	

Stopping	
High T, 
High µb	
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Cartoon by the courtesy of K. Itakura 

ρ/ρ0	

JAM model, Y. Nara, Phys. 
Rev. C61,024901(1999) 

U+U (reaches 8.6ρ0)	

Au+Au	

0CMCM 2)//(2 ργγρ == VA

γCM =~ 2.87 



l  Compilation of various particle 
ratios as a function of energy 

l  Hadrons including strangeness:      
K+, K-, Λ, Ξ, Ω 

l  π is a measure of the total 
number of particles produced  
in an event 

l  K+, K-, Λ, Ξ, have maximum 
yields around √sNN=5GeV 

–  K- is hard to produce since ubar 
is not copious in the beginning 

–  Production cross-section of Ω is 
very small 

l  Strangeness is most 
produced at AGS (J-PARC) 
energy 
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Review of previous results 
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Strange-rich matter at J-PARC 
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l  High T, low µb (RHIC, LHC)à High T, high µb (AGS, J-PARC-HI)　　　　　　　
à Low T, high µb (neutron star) 

l  Approaching to the core of the of neutron stars 
–  HI reaction produces Strangeness by Strong Interaction 
–  Neutron-star core produces Strangeness by Weak interaction 



l  Detector complex covering wide acceptance 
–  High speed tracking, TOF, EM calorimeter, and muon detector 

l  0.1% λI target: ~100MHz event rate, 1000 particles/event 

l  Collect data with minimum bias trigger (Data size: 1TB/s) 
–  Continuously take data with no trigger (Import ALICE experience) 
–  Select rare events in semi-online, using a high performance computing system 

2016-10-24 T. Sakaguchi Reimei@Inha, Korea 13 

Concept of measurement device 



Particle production rates	

14	

Beam : 1010 Hz 
 
0.1% target  
à Interaction rate 107 Hz 
 
Centrality trigger 1% 
à DAQ rate = 100kHz 
 
In 1 month experiment: 
ρ,ω,φàee 107-109 

 
D,J/Ψ         105-106 (20AGeV) 
                  (103 -104(10AGeV)) 
 
Hypernuclei 105 -1010	

Ref: HSD calculations in FAIR Baseline 
Technical Report (Mar 2006) 
A. Andronic, PLB697 (2011) 203  
	

Charm 

Dilepton 
Hypernuclei 

2016-10-24	

AGS	
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l  Centrality: Event class variable 
proportional to impact parameters 

–  0%: b=0, Central collisions 
–  100%: b=bmax, Peripheral collisions 

l  Same event selection as we did in the 
past wouldn’t yield new physics 

l  We add a new event selection 
–  After pre-selecting most central collisions 

l  Strangity, Baryonity 
–  Aggressively select interesting events 

relevant to the new phenomena found by 
the AGS experiment 

–  Strangeness enhancement, baryon 
stopping 

l  Statistics-starved “very rare event” 
selection feasible with high luminosity 
beam at J-PARC-HI 
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Event selection consideration 

chNKNStrangity /)( +≡

TS, H. Sako and M. Kitazawa, in prep. 

)()( pNpNBaryonity −≡

0% 
centrality 

100% 
centrality 



Physics Observable 
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Physics observables at RHIC 



l  Primarily focus on new observables found at higher energy experiments 
–  Based on knowledge gained at RHIC and LHC 

l  Study characteristics of high density matter 
–  Particle emission anisotropy, fluctuation of conserved quantities 
–  Lepton pairs, thermal photons 
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Physics observables at J-PARC-HI 



Thermal photons 
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l  Emitted from all the stages after 
collisions 

l  Penetrate the system unscathed after 
emission 

–  Carry out thermodynamical information 
such as temperature 

l  Photons will be produced by 
Compton scattering or qqbar 
annihilation at LO 

Small Rate: Yield ∝ ααs 
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• Product of Bose distribution 
and transition probability 

• Slope at E>>T tells 
temperature (T~200MeV) 



l  Produced in the same process as real photons, but with a virtual mass (Q2) 

l  At RHIC, virtual photons are measured via electron-decay channel 
–  PRL 104, 132301(2010) 

l  At J-PARC, photons will be measured via muon-decay channel 
–   γ -> µ+µ-： No background muons from π0 or η. S/N is better 
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Virtual photon measurement at J-PARC 

PHENIX, PRL. 104, 132301 (2010)  

T=~220MeV 



Low-mass dileptons 
l  From STAR’s BES result 

–  Low mass enhancement is well-described by cocktail + in-medium ρ 
modification (Rapp model) + thermal radiation 

l  How does it look like in even lower energy, i.e., in dense matter? 
–  At J-PARC, measurement of both di-electrons and di-muons is planned 
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� gcfd

8/20/2014J.Butterworth : Rice University 13

Rapp + Wabach, private communication
Adv. Nucl. Phys. 25, I (2000), Phys. Rept. 363, 85(2002), 
PRC 63 (2001) 054907, Adv. High Energy Phys. 2013 148253

F. Geurts, Thermal photon dilepton workshop, Aug, 2014 and NPA 904–905 (2013) 217c  

T. Sakaguchi Reimei@Inha, Korea 



Dileptons at RHIC and LHC energy 
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Figure 1.2: Expected sources for dilepton production as a function of invariant mass in ultrarela-
tivistic heavy-ion collisions[16].

transition is associated with deconfinement (the so-called ’Wilson line’), again realized in a strong
first-order transition. Thus, for heavy quarks one might hope to become sensitive to features of
deconfinement. This seems indeed to be the case: the confining potential within heavy quarkonium
states (J/Ψ, Υ) will be Debye-screened due to freely moving color charges in a QGP leading to a
dissolution of the bound states [17]. As a consequence the final abundance of, e.g., J/Ψ mesons
– and thus their contribution to the dilepton spectrum – is suppressed, signaling (the onset of)
the deconfinement transition. This very important topic will not be covered in the present review,
see Refs. [18] for the recent exciting developments. Finally, the intermediate-mass region (IMR)
might allow insights into aspects of quark-hadron ’duality’. As is evident from the saturation of
the vacuum annihilation cross section e+e− → hadrons by perturbative QCD above ∼ 1.5 GeV,
the essentially structureless thermal ’continuum’ up to the J/Ψ can be equally well described by
either hadronic or quark-gluon degrees of freedom. However, as a QGP can only be formed at
higher temperatures than a hadronic gas, the intermediate mass region might be suitable to ob-
serve a thermal signal from plasma radiation [9, 19] in terms of absolute yield. The most severe
’background’ in this regime is arising from decays of ’open-charm’ mesons, i.e., pairwise produced
DD̄ mesons followed by individual semileptonic decays. Although an enhanced charm production
is interesting in itself – probably related to the very early collision stages – it may easily mask a
thermal plasma signal. To a somewhat lesser extent, this also holds true for the lower-mass tail of
Drell-Yan production.

Until today, the measurement of dilepton spectra in URHIC’s has mainly been carried out at
the CERN-SpS by three collaborations: CERES/NA45 is dedicated to dielectron measurements in
the low-mass region [20, 21, 22, 23], HELIOS-3 [24] has measured dimuon spectra from threshold
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Dileptons at J-PARC energy 

l  Landscape for J-PARC 
(√s~5GeV) 

l  Intermediate Mass Range 
–  DDbar is very hard 
–  Sensitive to QGP thermal 

radiation? 

l  Low Mass Range 
–  in-medium modification of 

vector mesons (link to 
chiral symmetry 
restoration) 

–  Thermal radiation 
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Dimuons at J-PARC energy 

l  There is no muon decay 
for π0 and η

–  S/B is much better 
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γ->µ+µ- 



Particle flow 
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l  In non-central collisions, the collision area is 
not isotropic 

–  Different pressure gradient produces 
momentum anisotropy of emitted particles 

 

⌫n =< cos{n(�� �n)} >

dN

d(�� n)
= N0[1 + 2

1X

n=1

vncos{n(�� �n)}]

Φ2	

Φ3	

Fluctuation of nucleon 
position yields higher 
order anisotropy 
 (v3, v4, … vn) 
 
Sensitive to EOS, shear 
viscosity (η) to Entropy 
density (s) ratio (η/s) 



v1, v2, v3, v4…. 
l  v1: Slope of directed flow (dv1/dy) for protons will change its sign from 

positive to negative around mid-rapidity, if a phase transition occurs 

l  v2: Flow of protons and anti-protons merges at higher energies. 
–  Low pT, the pressure from the partonic phase is not well developed 

l  v3, v4: mainly from fluctuations. Will be increased in partonic phase 
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l  Energy fluctuation à Specific heat 

l  Multiplicity fluctuation à Compressibility 

l  Net-baryon fluctuation à Correlation 
length (an index for phase transition) 
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Fluctuation of quantities 

Variance :   σ 2 = <(ΔN)2> ~ ξ2               [χ(2)/χ(1)] 
Skewness:  Sσ = <(ΔN)3>/σ2 ~ ξ5.5         [χ(3)/χ(2)] 

Kurtosis:  Kσ 2 = <(ΔN)4>/σ2-3σ 2~ ξ9  [χ(4)/χ(2)] 

Skewness 

Red: κ=∞ 

Kurtosis 



Net-proton fluctuation 
l  Net-protons scanned over wide 

cms energy by STAR experiment 
at RHIC 

–  Variance follows Poisson 
–  Skewness doesn’t 

l  But it is expected from UrQMD 
–  Kurtosis does follow Poisson, 

except for 0-10% centrality 
l  Out of UrQMD expectation 
l  Critical point? 

 
l  UrQMD has no Critical Point 

l  Need confirmation at J-PARC 
–  Statistic-starved measurement 
–  A strong tool to point critical point 
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Variance :   σ 2 = <(ΔN)2> ~ ξ2               [χ(2)/χ(1)] 
Skewness:  Sσ = <(ΔN)3>/σ2 ~ ξ5.5         [χ(3)/χ(2)] 

Kurtosis:  Kσ 2 = <(ΔN)4>/σ2-3σ 2~ ξ9  [χ(4)/χ(2)] J-PARC region 



One comment on chiral symmetry 
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l  q-qbar condensate changes more 
rapidly in baryon density axis. 

l  Studying chiral symmetry 
restoration is essential in 
understanding the property of     
the QCD vacuum. 

 
l  Kaon mass is also said to shift 
 
l  Recent PHSD calculation with      

χ-sym. restoration reproduces    K/
π “horn” 

–  Cassing, Palmese, Moreau, 
Bratkovskaya, PRC93, 014902 
(2016) 

l  This is an interesting topic to be 
pursued at J-PARC-HI 



l  Density at J-PARC-HI can reach as ~8 times high as normal nuclear 
density 

–  Approach to the core of neutron star 
–  Approach to color superconductivity 
–  Exploring BEC-BCS crossover, common feature between condensed and 

nuclear matter 
 

l  Focus on “very rare events” using high beam luminosity 
–  10~100MHz event rate 
–  Triggerless data acquisition (importing ALICE experience) 
–  Select rare events in semi-online using high performance computing system 

l  Introducing a new aspect on measurement 
–  Introducing a new event selection based on the knowledge gained at AGS 
–  Strangity, baryonity 

l  Measurement of new observables found by RHIC and LHC experiments 
–  Particle emission anisotropy, fluctuation of conserved quantities 
–  Lepton pairs, thermal photons 
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Summary 


