Current matrix elements in HAL QCD method of lattice hadron potentials

N.Ishii and K.Watanabe and

RCNP, Osaka Univ: N.Ishii, K.Murano, Y.Ikeda

Univ. Tsukuba: H.Nemura Univ. Birjand: F.Etminan

RIKEN: T.Doi, T.Hatsuda, T.Iritani

Nihon Univ.: T.Inoue

YITP, Kyoto Univ.: S.Aoki, T.Miyamoto,

K.Sasaki, D.Kawai

Tors Univ.: S.Gongyo

Nuclear physics and Quantum Choromodynamics(QCD)

Background

◆The nuclear force is important for nuclear / astro phys.

proton neutron

◆Structures and reactions of atomic nuclei

◆ Experimental determination of nuclear force.

High Precision Nuclear Force

- ◆The same method does not work for
 - Hyperon-Hyperon interactions
 - Three nucleon interactions

→ We need a lattice QCD method!

Background

HAL QCD method is a LQCD method to calculate nuclear/hyperon forces and hadronic potentials, which are faithful to scattering phase shift of QCD.

- Brief review of HAL QCD method
- ☐ A new attempt:

Matrix element of current for HAL QCD method

Brief review of HAL QCD method for lattice hadron potentials	

HALQCD method

◆ Nambu-Bethe-Salpeter (NBS) wave func.

$$\langle 0|T[N(x)N(y)]N(+k)N(-k),in\rangle$$

◆ Relation to S-matrix by LSZ reduction formula

Bosonic notation to avoid lengthy notations.

$$\langle N(p_1)N(p_2), out | N(+k)N(-k), in \rangle_{\text{connected}}$$

$$= \left(iZ_N^{-1/2}\right)^2 \int d^4x_1 d^4x_2 \, e^{ip_1x_1} \Big(\Box_1 + m_N^2\Big) e^{ip_2x_2} \Big(\Box_2 + m_N^2\Big) \Big\langle 0 | T[N(x_1)N(x_2)] | N(+k)N(-k), in \rangle$$

◆Equal-time restriction of **NBS wave func.**

[C.-J.D.Lin et al., NPB619,467(2001).]

$$\psi_{k}(\vec{x} - \vec{y}) \equiv \lim_{x_{0} \to +0} Z_{N}^{-1} \left\langle 0 \middle| T \left[N(\vec{x}, x_{0}) N(\vec{y}, 0) \middle] N(+k) N(-k), in \right\rangle$$

$$= Z_{N}^{-1} \left\langle 0 \middle| N(\vec{x}, 0) N(\vec{y}, 0) \middle| N(+k) N(-k), in \right\rangle$$

$$\approx e^{i\delta(k)} \frac{\sin(kr + \delta(k))}{kr} + \cdots \text{ as } r \equiv |\vec{x} - \vec{y}| \to \text{large} \qquad \text{(for S-wave)}$$

Exactly the same func. form as scat. wave func's in Q.M.

Definition of the potential

Def. of potential from equal-time NBS wave func's:

Def. of potential from equal-time NBS wave func's:
$$\left(k^2 / m_N - H_0\right) \psi_k(\vec{r}) = \int d^3r' U(\vec{r}, \vec{r}') \psi_k(\vec{r}')$$
 Elastic region Elastic region

for
$$2\sqrt{m_N^2 + k^2} < E_{\text{th}} \equiv 2m_N + m_{\pi}$$

◆U(r,r') is E-indep. (One can prove its existence.)

$$H_0 \equiv -\frac{\nabla^2}{m_N}$$

 \blacktriangleright U(r,r') reproduces the scattering phase $\delta(k)$,

(together with equal-time NBS wave func's)

$$\psi_k(\vec{x} - \vec{y}) \simeq e^{i\delta(k)} \frac{\sin(kr + \delta(k))}{kr} + \cdots \text{ as } r \equiv |\vec{x} - \vec{y}| \to \text{large}$$

$$\Delta E = E_{n+1} - E_n \sim \frac{1}{m_N} \left(\frac{2\pi}{L}\right)^2$$
$$= O\left(\frac{1}{L^2}\right)$$

	L=3 fm	L=6 fm	L=9 fm	L=12 fm
 ΔE	181.5 MeV	45.3 MeV	20.2 MeV	11.3 MeV

Determination of potentials

We have a special strategy against the ground state saturation.

Def. R-correlator

[Ishii et al., PLB712(2012)437]

$$R(\vec{x} - \vec{y}, t) = e^{2mt} \left\langle 0 \middle| T \left[B(\vec{x}, t) B(\vec{y}, t) \cdot \overline{BB}(t = 0) \right] 0 \right\rangle$$
$$= \sum \psi_{k_n}(\vec{x} - \vec{y}) \cdot \exp\left(-(E_n - 2m)t\right) \cdot a_n$$

◆ Schroedinger eq. satisfied by HAL QCD pot. and NBS wave func's $\left(-H_0 + k_n^2 / m\right) \psi_{k_n}(\vec{r}) = \int d^3r' V(\vec{r}, \vec{r}') \psi_{k_n}(\vec{r}')$ Elastic region Elastic region

$$(-H_0 + k_n^2 / m) \psi_{k_n}(\vec{r}) = \int d^3r' V(\vec{r}, \vec{r'}) \psi_{k_n}(\vec{r'})$$

→ R-corr. satisfies time-dependent Schroedinger-like eq.

$$\left(-H_0 + \frac{1}{4m}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t}\right)R(\vec{r},t) = \int d^3r' V(\vec{r},\vec{r}')R(\vec{r}',t)$$

☐ Only **Elastic saturation** is needed.

Ground state saturation is not needed.

Elastic saturation is much easier than ground state saturation.

Ground state saturation is not needed in HAL QCD method.

Different mixture of NBS waves are generated by different α $f(x,y,z) = 1 + \alpha \left(\cos(2\pi x/L) + \cos(2\pi y/L) + \cos(2\pi z/L) \right)$ Good agreement!

→ Our method works!

Comparison: HAL QCD method and Luescher's finite vol. method

Ns=16,24,32,48, Nt=128, a=0.115 fm. m_{pi} = 940 MeV by Quenched QCD [Kurth et al., JHEP **1312**(2013)015.]

Good agreement!

→ HAL QCD pot. is faithful to the scat. phase.

Lattice QCD at (almost) physical point

◆ Multi-baryon systems at physical point requires huge spatial volume

Such gauge configurations have been generated by K computer.

96⁴ lattice, a \sim 0.085 fm, L \sim 8.2 fm, m_{π} \sim 145 MeV N.Ukita@LATTICE2015

◆ Determination of baryon-baryon potentials at "phys. point".

K computer

11.28 PFLOPS

"Physical point" calc. for nuclear/hyperon forces is currently going on.

◆ S=0: NN

♦ S=-1: NΛ-NΣ

Matrix element of current for HAL QCD method

Matrix elements in HAL QCD method

- HAL QCD method
 - → potentials which are faithful to the S-matrix of QCD.

Exchange currents

In the theory of nuclear force,

current/charge has additional term (exchange current/exch. charge)

$$\rho(x) = \rho^{(1)}(x) + \rho^{(2)}(x)$$
$$\vec{J}(x) = \vec{J}^{(1)}(x) + \vec{J}^{(2)}(x)$$

◆ The current conservation (gauge invariance) implies

$$\vec{\nabla} \cdot \vec{J}^{(2)}(x) = -i \left[V, \rho^{(1)}(x) \right] \qquad \left(\rho^{(2)}(x) \sim 0 \text{ is assumed} \right)$$

- → The exch. current is closely related to the potential.
- ◆ For phenomenologically determined nuclear forces, all one can do is to impose a constraint.
- ◆ For HAL QCD potentials,
 we may use QCD to obtain explicit (exchange) currents and charges. [←our aim]
 (Depending on the interpolating field, these contributions can be large)
- ♦ We proceed step by step:
 Non-rela. Q.M. → Lorentz cov. system → composite particles → Lattice QCD

A toy model (non-rela. two-channel coupling model)

$$H \equiv H_1 + H_2 + V_{11} + V_{12} + V_{21} + V_{22}$$

$$H_1 \equiv \int d^3 x \, \phi_1^{\dagger}(\vec{x}) \left(-\frac{\nabla^2}{2m} \right) \phi_1(\vec{x})$$

$$H_2 \equiv \int d^3 x \, \phi_2^{\dagger}(\vec{x}) \left(-\frac{\nabla^2}{2m} + \Delta \right) \phi_2(\vec{x})$$

$$V_{\alpha\beta} \equiv \int d^3 x \, \phi_{\alpha}^{\dagger}(\vec{x}) V_{\alpha\beta}(\vec{x}) \phi_{\beta}(\vec{x})$$

$$(\alpha, \beta = 1, 2)$$

- np-np' coupling system is mimicked
- ♦ n is fixed at the origin
- n, p, p' are scalar bosons for simplicity.

"Nambu-Bethe-Salpeter (NBS)" wave function

◆ Def ("NBS wave function")

$$\psi_{\alpha}(x) \equiv \left\langle 0 \middle| \phi_{\alpha}(x) \middle| \psi \right\rangle \tag{\alpha = 1,2}$$

☐ Single particle state

$$|\psi\rangle = \int d^3x \Big(\phi_1^{\dagger}(\vec{x})|0\rangle\psi_1(\vec{x}) + \phi_2^{\dagger}(\vec{x})|0\rangle\psi_2(\vec{x})\Big)$$

NBS wave functions satisfy a coupled channel eq.

$$\left(i \partial_0 + \frac{1}{2m} \partial_i^2 \right) \psi_1(x) = V_{11}(\vec{x}) \psi_1(x) + V_{12}(\vec{x}) \psi_2(x)$$

$$\left(i \partial_0 + \frac{1}{2m} \partial_i^2 - \Delta \right) \psi_2(x) = V_{21}(\vec{x}) \psi_1(x) + V_{22}(\vec{x}) \psi_2(x)$$

HAL QCD potential of this toy model

(Elimination of ψ_2 to obtain an effective theory of ψ_1 for $E < \Delta$)

We define the E-indep. non-local potential [HAL QCD pot.] as

$$v(\vec{x}, \vec{x}') = \sum_{\substack{m \\ E_m < \Delta}} \left(V_{11}(\vec{x}) \psi_{1,m}(\vec{x}) + V_{12}(\vec{x}) \psi_{2,m}(\vec{x}) \right) \tilde{\psi}_{1,m}(\vec{x}')$$

by using the dual vector which satisfies the orthogonality relation

$$\int d^3x \tilde{\psi}_{1,n}(\vec{x}) \psi_{1,m}(\vec{x}) = \delta_{nm}$$

→

NBS wave func. $\psi_{1,n}(x) \equiv \langle 0 | \phi_1(x) | n \rangle$ for $E_n < \Delta$ satisfy the Schrödinger eq:

$$\left(i\partial_0 + \frac{1}{2m}\nabla^2\right)\psi_{1,n}(x) = \int d^3x' v(\vec{x}, \vec{x}')\psi_{1,n}(x')$$

(Proof)
$$\int d^{3}x' v(\vec{x}, \vec{x}') \psi_{1,n}(x')$$

$$= \sum_{m} \left(V_{11}(\vec{x}) \psi_{1,m}(\vec{x}) + V_{12}(\vec{x}) \psi_{2,m}(\vec{x}) \right) \int d^{3}x' \tilde{\psi}_{1,m}(\vec{x}') \cdot \psi_{1,n}(\vec{x}') e^{-iE_{n}x_{0}}$$

$$\Rightarrow \delta_{nm}$$

$$= V_{11}(\vec{x}) \psi_{1,n}(x) + V_{12}(\vec{x}) \psi_{2,n}(x)$$

Strategy for the current matrix element

To obtain the explicit expression for the exch. current/charges,

- ☐ We embed the system in an external field A.
- ☐ The current/charge is obtained from a response of the system to the ext. field A.

$$H[A_t] \equiv H_1[A_t] + H_2[A_t] + V_{11} + V_{12} + V_{21} + V_{22}$$

◆ We introduce an ext. field in the unperturbed one-body Hamiltonians

$$\begin{split} H_1 &\equiv \int d^3x \, \phi_1^\dagger(\vec{x}) \Bigg(-\frac{1}{2m} \Big(\partial_i - i A_i(\vec{x}, t) \Big)^2 - A_0(\vec{x}, t) \Bigg) \phi_1(\vec{x}) \\ H_2 &\equiv \int d^3x \, \phi_2^\dagger(\vec{x}) \Bigg(-\frac{1}{2m} \Big(\partial_i - i A_i(\vec{x}, t) \Big)^2 - A_0(\vec{x}, t) + \Delta \Bigg) \phi_2(\vec{x}) \end{split}$$

We do not introduce an ext. field in the potential for simplicity.

$$V_{\alpha\beta} \equiv \int d^3x \, \phi_{\alpha}^{\dagger}(\vec{x}) V_{\alpha\beta}(\vec{x}) \phi_{\beta}(\vec{x})$$

Time evolution in an ext. field with a cut off

igoplus Hamiltonian with Cut off (E < $\Lambda \equiv \Delta$)

$$H_{\Lambda}[A_t] \equiv \mathbb{P}_{\Lambda} H[A_t] \mathbb{P}_{\Lambda}$$
 with $\mathbb{P}_{\Lambda} \equiv \sum_{E < \Lambda} |E\rangle\langle E|$

◆ NBS wave func. in an ext. field with a cutoff

$$\psi_{\alpha}(x;A) \equiv \left\langle 0 \middle| \phi_{\alpha}(x;A) \middle| \psi \right\rangle$$
 with $\phi_{\alpha}(x;A) \equiv U_{\Lambda}(0,x_0;A) \phi_{\alpha}(\vec{x}) U_{\Lambda}(x_0,0;A)$

$$U_{\Lambda}(t_1, t_0; A) \equiv T \exp\left(i \int_{t_0}^{t_1} dt \, H_{\Lambda}[A_t]\right)$$

◆ NBS wave func. satisfy the coupled channel eq.

$$\left(iD_0 + \frac{1}{2m}D_i^2\right)\psi_{\alpha}(x;A) = \sum_{\beta=1,2} \int d^3x' V_{\alpha,\beta;\Lambda}(\vec{x},\vec{x}';A_{x_0})\psi_{\beta}(x';A)$$

$$D_{\mu} \equiv \partial_{\mu} - iA_{\mu}(x)$$

$$V_{\alpha\beta;\Lambda}(\vec{x}, \vec{x}'; A_{x_0}) \equiv V_{\alpha\beta}(\vec{x})\delta^3(x - x') + \delta V_{\alpha\beta;\Lambda}(\vec{x}, \vec{x}', A_{x_0})$$

$$\delta V_{\alpha\beta;\Lambda}(\vec{x},\vec{x}';A_{x_0}) \equiv \left\langle 0 \middle| \phi_{\alpha}(\vec{x}) (\mathbb{P}_{\Lambda} - 1) H[A_{x_0}] \mathbb{P}_{\Lambda} \phi_{\beta}^{\dagger}(\vec{x}') \middle| \right\rangle$$

HAL QCD potential in an ext. field

(Elimination of ψ_2 to obtain an effective theory of ψ_1 for E < Δ)

We define state-indep. non-local potential [HAL QCD pot. in ext. field] as

$$\begin{aligned} & v_{\Lambda}(\vec{x}, \vec{x}'; A_{x_0}) \\ & \equiv \sum \int d^3x'' \Big(V_{11,\Lambda}(\vec{x}, \vec{x}''; A_{x_0}) \psi_{1,m}(\vec{x}'') + V_{12\Lambda}(\vec{x}, \vec{x}''; A_{x_0}) \psi_{2,m}(\vec{x}'') \Big) \tilde{\psi}_{1,m}(\vec{x}') \end{aligned}$$

by using the dual vector which satisfies the orthogonality relation

$$\int d^3x \tilde{\psi}_{1,n}(\vec{x}) \psi_{1,m}(\vec{x}) = \delta_{nm}$$

>

 $E_m < \Lambda$

NBS wave func $\psi_{1,n}(x;A) \equiv \left\langle 0 \middle| \phi_1(x;A) \middle| n \right\rangle$ in ext. field satisfy the Schrödinger eq in ext. field:

$$\left(iD_0 + \frac{1}{2m}D_i^2\right)\psi_{1,n}(x;A) = \int d^3x' v_{\Lambda}(\vec{x}, \vec{x}'; A_{x_0})\psi_{1,n}(x;A) \text{ for } E_n < \Lambda$$

$$D_{\mu} \equiv \partial_{\mu} - iA_{\mu}(x)$$

(proof is similar)

Current matrix element

Schrödinger eq. in an ext. field

$$\left(iD_0 + \frac{1}{2m}D_i^2\right)\psi_{1,n}(x;A) = \int d^3x' v_{\Lambda}(\vec{x}, \vec{x}'; A_{x_0})\psi_{1,n}(x;A) \text{ for } E_n < \Lambda$$

$$\frac{\delta}{\delta A_{\mu}(z)}$$
 (both side)

$$A \equiv 0$$

$$\left(i\partial_{0} + \frac{1}{2m}\partial_{i}^{2} - v_{\Lambda}\right) \frac{\delta\psi_{1,n}(x;A)}{\delta A_{\mu}(z)} = \underbrace{\frac{\delta}{\delta A_{\mu}(z)} \left(-iD_{0} - \frac{1}{2m}D_{i}^{2} + v_{\Lambda}\right)}_{\equiv K_{\mu}(z)} \psi_{1,n}(x)$$

use Green's func.

$$\frac{\delta \psi_{1,n}(x;A)}{\delta A_{\mu}(z)} = \left(i \partial_0 + \frac{1}{2m} \partial_i^2 - v_{\Lambda}\right)^{-1} K_{\mu}(z) \cdot \psi_{1,n}(x)$$

 $A \equiv 0$

Current matrix element formula

$$\left\langle m \left| j_{\mu}(\vec{z}) \right| n \right\rangle = -\int d^{3}x \int d^{3}x' \psi_{m}^{L}(\vec{x}) K_{\mu}(\vec{x}, \vec{x}'; \vec{z}) \psi_{n}^{R}(\vec{x}')$$

$$\begin{split} & \boldsymbol{K}_{\mu}(\vec{x}, \vec{x}'; \vec{z}) \equiv \frac{\delta}{\delta A_{\mu}(z)} \Bigg[\bigg(-iD_0 + \frac{1}{2m} D_i^2 \bigg) \delta^3(x - x') + v_{\Lambda}(\vec{x}, \vec{x}'; A_{x_0}) \Bigg]_{A \equiv 0} \\ & \boldsymbol{\psi}_n^R(\vec{x}), \ \boldsymbol{\psi}_n^L(\vec{x}) \quad \text{ right and left eig. vectors of } \quad \boldsymbol{h} \equiv -\frac{1}{2m} \partial_i^2 + v_{\Lambda} \end{split}$$

 \bullet μ =0 component:

$$\langle m | j_0(\vec{z}) | n \rangle = \underbrace{\psi_m^L(\vec{z}) \psi_n^R(\vec{z})}_{\text{direct charge}} - \underbrace{\int d^3x \int d^3x' \psi_m^L(\vec{x}) \frac{\delta v_\Lambda(\vec{x}, \vec{x}'; A)}{\delta A_0(\vec{z})} \psi_n^R(\vec{x}')}_{\text{exch. charge}}$$

Procedure which fits HAL QCD method for LQCD

◆ Generate NBS wave func. in an ext. field with cut off

$$\psi_{1,n}(x;A) \equiv \langle 0 | \phi_1(x;A) | n \rangle$$
 for $E_n < \Lambda \equiv \Delta$

lacktriangle Determine HAL QCD potential in ext. field so that $\psi_{1,n}(x;A)$ can be reproduced by Schrodinger eq.

$$\left(iD_0 + \frac{1}{2m}D_i^2\right)\psi_{1,n}(x;A) = \int d^3x' v_{\Lambda}(\vec{x}, \vec{x}'; A_{x_0})\psi_{1,n}(x;A) \text{ for } E_n < \Lambda$$

Formula for the current matrix element

$$\left\langle m \middle| j_{\mu}(\vec{z}) \middle| n \right\rangle = -\int d^{3}x \int d^{3}x' \psi_{m}^{L}(\vec{x}) K_{\mu}(\vec{x}, \vec{x}'; \vec{z}) \psi_{n}^{R}(\vec{x}') \qquad \text{for } E_{m}, E_{n} < \Lambda$$

$$K_{\mu}(\vec{x}, \vec{x}'; \vec{z}) = \frac{\delta}{\delta A_{\mu}(z)} \left[\left(-iD_0 + \frac{1}{2m} D_i^2 \right) \delta^3(x - x') + v_{\Lambda}(\vec{x}, \vec{x}'; A_{x_0}) \right]_{A = 0}$$

$$\psi_n^R(\vec{x}), \psi_n^L(\vec{x})$$
 right and left eig. vectors of $h = -\frac{1}{2m}\partial_i^2 + v_\Lambda$

<u>Summary</u>

- ◆ HAL QCD method for the lattice hadron potentials
 □ It is faithful to the scattering phase shift.
 □ The potential is obtained without achieving the ground state saturation.
 □ Physical point calculations of nuclear/hyperon forces are currently going on.
- Current matrix element in HAL QCD method
 - ☐ Interpolating field dependence of the potential/NBS wave func.
 - → in the calculation of current matrix element in HAL QCD method, exchange currents and exchange charges may be important.
 - We derived a formula in a non-rela. 2 channel coupling model.
 - ✓ The formula is inconvenient.NBS wave in an ext. field with cutoff may not easily be obtained.
 - ✓ The formula should be extended to
 - → Lorentz covariant system.
 - → Composite particle system
 - \rightarrow LQCD.