Experimental study of double hypernuclei at J-PARC

H.Ekawa for J-PARC E07 collaboration Kyoto Univ. Dept. of Phys.

2016 JAEA/ASRC Reimei Workshop Inha Univ 2016.10.24

Double hypernuclei

Baryon-Baryon interaction described by SU(3)_f symmetry

$$S = 0,-1$$

- nucleon scattering
- hypernuclei experiment

$$S = -2$$

- valid data is limited
- hyperon scattering experiment is difficult
 - $\tau : \sim 10^{-10} s$

Double hypernuclei are important probes to study S=-2 physics

- two Λs are in a nucleus
- AA interaction can be extracted
- Emulsion experiment is effective
 - detect sequential weak decays
 - <1µm position resolution</p>

NAGARA event (KEK E373)

$$^{12}\text{C} + \Xi^{-} \rightarrow {}_{\Lambda\Lambda}^{6}\text{He} + {}^{4}\text{He} + t$$

$$\hookrightarrow {}_{\Lambda}^{5}\text{He} + p + \pi^{-}.$$

$$\text{B}_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$$

$$B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$$

 $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \text{ MeV}$
weakly attractive

J-PARC E07 Experiment

Double hypernuclei search experiment

- hybrid emulsion method

10 times lager statistics of E373 (10⁴ Ξ⁻stop)

- Emulsion amount (x2), K⁻ purity (x4), detector acceptance(x1.4)
- 100 double hyper nuclei candidates
- 10 species are expected to be identified
- study A dependence of ΔB_{ΛΛ}

detect X-ray from Ξ⁻ atom with Ge detector array

- background suppression by Ξ⁻ stop tagging in emulsion
- first measurement in the world

hybrid emulsion method

trace E⁻ track into emulsion

layers: 4 (XYX'Y')

position resolution: 15µm angular resolution: 20mrad

2% of tagged E-will stop in emulsoin

Setup

KURAMA spectrometer is newly constructed at J-PARC K1.8 beam line.

KURAMA detectors

all detector were developed

Emulsion

size: 350mm x 345mm

density: 3.4g/cm³

amount: 118 stacks (2.1t emulsion gel)

acceptable track density: 10⁶/mm²

layer: 13

1 thin plate(0.38mm) + 11 thick plates(1mm) + 1 thin plate

components : C, O, N, H, Ag, Br ...

Emulsion mover

move emulsion synchronized with spill record position (resolution : a few µm)

Emulsion thin plate (after development)

Cassette

Emulsion stacks are packed in cassette.

Cassette are evacuated to fix emulsion plates.

KURAMA spectrometer

Target region

Target region

Diamond target

Diamond target is attached on the surface of FBH

size : $5 \text{ cm(W)} \times 3 \text{ cm(H)} \times 3 \text{ cm(T)}$ density : 3.24 g/cm^3

E07 2016 Run

KURAMA spectrometer commissioning and emulsion exposure were carried out at Jun. 2016.

18 stacks of emulsion were exposed.

User time: 9.9 days

(request : 12 days)

Commissioning

5.0 days

Emulsion exposure

4.9 days (18stacks)

statistics: E373 x 1.5

(15% of all emulsions)

Run-end photo @ K1.8 counting room

Trigger

BH₁

(K⁻,K⁺) trig: BH1 x BH2 x BAC x PVAC x FAC x TOF x Mtx

CH

incoming K-

outgoing K+

BH₂

BAC

FAC

Matrix Trigger (Mtx)

select particle track in magnetic field by hit pattern combination (CH &TOF) →select momentum & charge

Trigger rate: 1380/spill (5.5s cycle)

(K-,K+): 1250/spill

- (beam, TOF): 80

- (π, TOF) : 50

DAQ eff.: ~85%

Emulsion exposure

Beam condition

❖ K⁻ intensity : 260k/spill

★ K⁻ purity: 82%

beam size : σ(X) : 15.5mm

 $\sigma(Y) : 4.9 mm$

Procedure

- 1. Exchange emulsion (0.5h)
- 2. pattern match (0.5h)
- 3. K⁻ exposure (6h)

Emulsion plates were measured and packed in the dark room.

1 cycle (stack) need 7 hours.

4 corners are used for pattern match (low intensity \bar{p})

K⁻ were irradiated all surface except corners

Progress of exposure

Emulsion SSD 14

We use pattern match method to align SSD and Emulsion.

region: (9mm)²
< 25mrad, 1.7k tracks

SSD

region: (10mm)²
< 50mrad, 3.1k tracks

Xmean: 166817 +- 5 $[\mu m]$ Xsigma: 52 +- 6 $[\mu m]$

We analyzed Emulsion and SSD to find \bar{p} tracks.

Pattern match signal was found.

Evaluation of accuracy and efficiency is ongoing.

Analysis (KURAMA spectrometer)¹⁵

- particle momentum are analyzed by Runge Kutta
- K+ can be identified.

Mass distribution

mass [GeV/c²]

Summary

- J-PARC E07 experiment is double hypernuclei search experiment with hybrid emulsion method
- 100 double hypernuclei will be detected including 10 identified species.
- Commissioning run for KURAMA spectrometer and emulsion exposure were performed in 2016 Jun.
- 18 stacks of emulsion were exposed. (15% of full statistics)
- Plan
 - E track will be searched by SSD analysis
 - remaining 100 stacks of emulsion will be exposed in 2017.
 - improve DAQ efficiency (mass trigger, reduce SSD noise)